scispace - formally typeset
Search or ask a question
Proceedings Article

EfficientL 1 regularized logistic regression

16 Jul 2006-pp 401-408
TL;DR: Theoretical results show that the proposed efficient algorithm for L1 regularized logistic regression is guaranteed to converge to the global optimum, and experiments show that it significantly outperforms standard algorithms for solving convex optimization problems.
Abstract: L1 regularized logistic regression is now a workhorse of machine learning: it is widely used for many classification problems, particularly ones with many features. L1 regularized logistic regression requires solving a convex optimization problem. However, standard algorithms for solving convex optimization problems do not scale well enough to handle the large datasets encountered in many practical settings. In this paper, we propose an efficient algorithm for L1 regularized logistic regression. Our algorithm iteratively approximates the objective function by a quadratic approximation at the current point, while maintaining the L1 constraint. In each iteration, it uses the efficient LARS (Least Angle Regression) algorithm to solve the resulting L1 constrained quadratic optimization problem. Our theoretical results show that our algorithm is guaranteed to converge to the global optimum. Our experiments show that our algorithm significantly outperforms standard algorithms for solving convex optimization problems. Moreover, our algorithm outperforms four previously published algorithms that were specifically designed to solve the L1 regularized logistic regression problem.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
23 Jun 2008
TL;DR: A method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem and verifying the robustness of the method on echocardiograms collected in routine clinical practice at one hospital is proposed.
Abstract: Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.

141 citations


Cites methods from "EfficientL 1 regularized logistic r..."

  • ...In order to solve problems of this type, we approximated the L 1 L 2 regularizer using the multi-quadric function ||w ||2 ≈ √ w T w + ǫ , (similar to [21]), and used a limited-memory BFGS algorithm to optimize this differentiable objective for a small positive ǫ ....

    [...]

Book ChapterDOI
17 Sep 2007
TL;DR: This work exploits unlabeled data from the target domain to train a model that maximizes likelihood over the training sample while minimizing the distance between the training and target distribution.
Abstract: The goal in domain adaptation is to train a model using labeled data sampled from a domain different from the target domain on which the model will be deployed. We exploit unlabeled data from the target domain to train a model that maximizes likelihood over the training sample while minimizing the distance between the training and target distribution. Our focus is conditional probability models used for predicting a label structure y given input x based on features defined jointly over x and y . We propose practical measures of divergence between the two domains based on which we penalize features with large divergence, while improving the effectiveness of other less deviant correlated features. Empirical evaluation on several real-life information extraction tasks using Conditional Random Fields (CRFs) show that our method of domain adaptation leads to significant reduction in error.

131 citations


Cites methods from "EfficientL 1 regularized logistic r..."

  • ...We used the -approximation trick proposed in [16] for handling the discontinuity of the objective when γ = 1....

    [...]

Journal ArticleDOI
TL;DR: Comparison with several state-of-the-art algorithms specifically designed for solving large-scale ℓ1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that theCGD method is not specifically designed just to solve these special classes of problems.
Abstract: In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing l1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated as CGD) to solve the more general l1-regularized convex minimization problems, i.e., the problem of minimizing an l1-regularized convex smooth function. We establish a Q-linear convergence rate for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We propose efficient implementations of the CGD method and report numerical results for solving large-scale l1-regularized linear least squares problems arising in compressed sensing and image deconvolution as well as large-scale l1-regularized logistic regression problems for feature selection in data classification. Comparison with several state-of-the-art algorithms specifically designed for solving large-scale l1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that the CGD method is not specifically designed just to solve these special classes of problems.

124 citations

Dissertation
01 Jan 2008
TL;DR: This thesis develops models and methods for collaborative prediction with non-random missing data by combining standard models for complete data with models of the missing data process and describes several strategies for classification with missing features including the use of generative classifiers.
Abstract: Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis. Based on this foundation, we develop several novel models and inference procedures for both the collaborative prediction problem and the problem of classification with missing features. We develop models and methods for collaborative prediction with non-random missing data by combining standard models for complete data with models of the missing data process. Using a novel recommender system data set and experimental protocol, we show that each proposed method achieves a substantial increase in rating prediction performance compared to models that assume missing ratings are missing at random. We describe several strategies for classification with missing features including the use of generative classifiers, and the combination of standard discriminative classifiers with single imputation, multiple imputation, classification in subspaces, and an approach based on modifying the classifier input representation to include response indicators. Results on real and synthetic data sets show that in some cases performance gains over baseline methods can be achieved by methods that do not learn a detailed model of the feature space.

122 citations


Cites methods from "EfficientL 1 regularized logistic r..."

  • ...present a method based on a modification of iteratively re-weighted least squares [48]....

    [...]

Proceedings Article
08 Dec 2014
TL;DR: It is proved that RoLR is robust to a constant fraction of adversarial outliers, the first result on estimating logistic regression model when the covariate matrix is corrupted with any performance guarantees.
Abstract: We consider logistic regression with arbitrary outliers in the covariate matrix. We propose a new robust logistic regression algorithm, called RoLR, that estimates the parameter through a simple linear programming procedure. We prove that RoLR is robust to a constant fraction of adversarial outliers. To the best of our knowledge, this is the first result on estimating logistic regression model when the covariate matrix is corrupted with any performance guarantees. Besides regression, we apply RoLR to solving binary classification problems where a fraction of training samples are corrupted.

121 citations


Cites methods from "EfficientL 1 regularized logistic r..."

  • ...Moreover, RoLR only needs to solve a linear programming problem and thus is scalable to large-scale data sets, in sharp contrast to previous LR optimization algorithms which typically resort to (computationally expensive) iterative reweighted method [11]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations


"EfficientL 1 regularized logistic r..." refers methods in this paper

  • ...(Tibshirani 1996) Several algorithms have been developed to solve L1 constrained least squares problems....

    [...]

  • ...See, Tibshirani (1996) for details.)...

    [...]

  • ...(Tibshirani 1996) Several algorithms have been developed to solve L1 constrained least squares problems....

    [...]

Book
01 Mar 2004
TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Abstract: Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

33,341 citations

Book
01 Jan 1983
TL;DR: In this paper, a generalization of the analysis of variance is given for these models using log- likelihoods, illustrated by examples relating to four distributions; the Normal, Binomial (probit analysis, etc.), Poisson (contingency tables), and gamma (variance components).
Abstract: The technique of iterative weighted linear regression can be used to obtain maximum likelihood estimates of the parameters with observations distributed according to some exponential family and systematic effects that can be made linear by a suitable transformation. A generalization of the analysis of variance is given for these models using log- likelihoods. These generalized linear models are illustrated by examples relating to four distributions; the Normal, Binomial (probit analysis, etc.), Poisson (contingency tables) and gamma (variance components).

23,215 citations

01 Jan 1998

12,940 citations


"EfficientL 1 regularized logistic r..." refers methods in this paper

  • ...We tested each algorithm’s performance on 12 different datasets, consisting of 9 UCI datasets (Newman et al. 1998), one artificial dataset called Madelon from the NIPS 2003 workshop on feature extraction,3 and two gene expression datasets (Microarray 1 and 2).4 Table 2 gives details on the number…...

    [...]

  • ...We tested each algorithm’s performance on 12 different real datasets, consisting of 9 UCI datasets (Newman et al. 1998) and 3 gene expression datasets (Microarray 1, 2 and 3) 3....

    [...]

Journal ArticleDOI
TL;DR: This is the Ž rst book on generalized linear models written by authors not mostly associated with the biological sciences, and it is thoroughly enjoyable to read.
Abstract: This is the Ž rst book on generalized linear models written by authors not mostly associated with the biological sciences. Subtitled “With Applications in Engineering and the Sciences,” this book’s authors all specialize primarily in engineering statistics. The Ž rst author has produced several recent editions of Walpole, Myers, and Myers (1998), the last reported by Ziegel (1999). The second author has had several editions of Montgomery and Runger (1999), recently reported by Ziegel (2002). All of the authors are renowned experts in modeling. The Ž rst two authors collaborated on a seminal volume in applied modeling (Myers and Montgomery 2002), which had its recent revised edition reported by Ziegel (2002). The last two authors collaborated on the most recent edition of a book on regression analysis (Montgomery, Peck, and Vining (2001), reported by Gray (2002), and the Ž rst author has had multiple editions of his own regression analysis book (Myers 1990), the latest of which was reported by Ziegel (1991). A comparable book with similar objectives and a more speciŽ c focus on logistic regression, Hosmer and Lemeshow (2000), reported by Conklin (2002), presumed a background in regression analysis and began with generalized linear models. The Preface here (p. xi) indicates an identical requirement but nonetheless begins with 100 pages of material on linear and nonlinear regression. Most of this will probably be a review for the readers of the book. Chapter 2, “Linear Regression Model,” begins with 50 pages of familiar material on estimation, inference, and diagnostic checking for multiple regression. The approach is very traditional, including the use of formal hypothesis tests. In industrial settings, use of p values as part of a risk-weighted decision is generally more appropriate. The pedagologic approach includes formulas and demonstrations for computations, although computing by Minitab is eventually illustrated. Less-familiar material on maximum likelihood estimation, scaled residuals, and weighted least squares provides more speciŽ c background for subsequent estimation methods for generalized linear models. This review is not meant to be disparaging. The authors have packed a wealth of useful nuggets for any practitioner in this chapter. It is thoroughly enjoyable to read. Chapter 3, “Nonlinear Regression Models,” is arguably less of a review, because regression analysis courses often give short shrift to nonlinear models. The chapter begins with a great example on the pitfalls of linearizing a nonlinear model for parameter estimation. It continues with the effective balancing of explicit statements concerning the theoretical basis for computations versus the application and demonstration of their use. The details of maximum likelihood estimation are again provided, and weighted and generalized regression estimation are discussed. Chapter 4 is titled “Logistic and Poisson Regression Models.” Logistic regression provides the basic model for generalized linear models. The prior development for weighted regression is used to motivate maximum likelihood estimation for the parameters in the logistic model. The algebraic details are provided. As in the development for linear models, some of the details are pushed into an appendix. In addition to connecting to the foregoing material on regression on several occasions, the authors link their development forward to their following chapter on the entire family of generalized linear models. They discuss score functions, the variance-covariance matrix, Wald inference, likelihood inference, deviance, and overdispersion. Careful explanations are given for the values provided in standard computer software, here PROC LOGISTIC in SAS. The value in having the book begin with familiar regression concepts is clearly realized when the analogies are drawn between overdispersion and nonhomogenous variance, or analysis of deviance and analysis of variance. The authors rely on the similarity of Poisson regression methods to logistic regression methods and mostly present illustrations for Poisson regression. These use PROC GENMOD in SAS. The book does not give any of the SAS code that produces the results. Two of the examples illustrate designed experiments and modeling. They include discussion of subset selection and adjustment for overdispersion. The mathematic level of the presentation is elevated in Chapter 5, “The Family of Generalized Linear Models.” First, the authors unify the two preceding chapters under the exponential distribution. The material on the formal structure for generalized linear models (GLMs), likelihood equations, quasilikelihood, the gamma distribution family, and power functions as links is some of the most advanced material in the book. Most of the computational details are relegated to appendixes. A discussion of residuals returns one to a more practical perspective, and two long examples on gamma distribution applications provide excellent guidance on how to put this material into practice. One example is a contrast to the use of linear regression with a log transformation of the response, and the other is a comparison to the use of a different link function in the previous chapter. Chapter 6 considers generalized estimating equations (GEEs) for longitudinal and analogous studies. The Ž rst half of the chapter presents the methodology, and the second half demonstrates its application through Ž ve different examples. The basis for the general situation is Ž rst established using the case with a normal distribution for the response and an identity link. The importance of the correlation structure is explained, the iterative estimation procedure is shown, and estimation for the scale parameters and the standard errors of the coefŽ cients is discussed. The procedures are then generalized for the exponential family of distributions and quasi-likelihood estimation. Two of the examples are standard repeated-measures illustrations from biostatistical applications, but the last three illustrations are all interesting reworkings of industrial applications. The GEE computations in PROC GENMOD are applied to account for correlations that occur with multiple measurements on the subjects or restrictions to randomizations. The examples show that accounting for correlation structure can result in different conclusions. Chapter 7, “Further Advances and Applications in GLM,” discusses several additional topics. These are experimental designs for GLMs, asymptotic results, analysis of screening experiments, data transformation, modeling for both a process mean and variance, and generalized additive models. The material on experimental designs is more discursive than prescriptive and as a result is also somewhat theoretical. Similar comments apply for the discussion on the quality of the asymptotic results, which wallows a little too much in reports on various simulation studies. The examples on screening and data transformations experiments are again reworkings of analyses of familiar industrial examples and another obvious motivation for the enthusiasm that the authors have developed for using the GLM toolkit. One can hope that subsequent editions will similarly contain new examples that will have caused the authors to expand the material on generalized additive models and other topics in this chapter. Designating myself to review a book that I know I will love to read is one of the rewards of being editor. I read both of the editions of McCullagh and Nelder (1989), which was reviewed by Schuenemeyer (1992). That book was not fun to read. The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities.

10,520 citations


Additional excerpts

  • ...(Nelder & Wedderbum 1972; McCullagh & Nelder 1989)...

    [...]

  • ...(Nelder & Wedderbum 1972; McCullagh & Nelder 1989 )...

    [...]