scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efflux Pumps of Mycobacterium tuberculosis Play a Significant Role in Antituberculosis Activity of Potential Drug Candidates

01 May 2012-Antimicrobial Agents and Chemotherapy (American Society for Microbiology)-Vol. 56, Iss: 5, pp 2643-2651
TL;DR: It is shown that these four efflux pump KO mutants of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds and inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis.
Abstract: Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.
Citations
More filters
Journal ArticleDOI
TL;DR: The 2-(4'-propoxyphenyl)quinoline scaffold is suitable to obtain compounds endowed with good efflux pump inhibitory activity against both S. aureus and nontuberculous mycobacteria.
Abstract: The identification of efflux inhibitors to be used as adjuvants alongside existing drug regimens could have a tremendous value in the treatment of any mycobacterial infection. Here, we investigated the ability of four 2-(4′-propoxyphenyl)quinoline Staphylococcus aureus NorA efflux inhibitors (1–4) to reduce the efflux activity in Mycobacterium smegmatis and Mycobacterium avium strains. All four compounds were able to inhibit efflux pumps in both mycobacterial species; in particular, O-ethylpiperazinyl derivative 2 showed an efflux inhibitory activity comparable to that of verapamil, the most potent mycobacterial efflux inhibitor reported to date, and was able to significantly reduce the MIC values of macrolides against different M. avium strains. The contribution of the M. avium efflux pumps MAV_1406 and MAV_1695 to clarithromycin resistance was proved because they were found to be overexpressed in two M. avium 104 isogenic strains showing high-level clarithromycin resistance. These results indicated a co...

19 citations

Journal ArticleDOI
TL;DR: It is shown that antibiotics can be distinguished based on their specific transcriptional stress fingerprint, which is more distinctive in M. marinum than in other tuberculosis models.
Abstract: Due to the rise of drug-resistant forms of tuberculosis, there is an urgent need for novel antibiotics to effectively combat these cases and shorten treatment regimens. Recently, drug screens using whole-cell analyses have been shown to be successful. However, current high-throughput screens focus mostly on stricto sensu life/death screening that give little qualitative information. In doing so, promising compound scaffolds or nonoptimized compounds that fail to reach inhibitory concentrations are missed. To accelerate early tuberculosis (TB) drug discovery, we performed RNA sequencing on Mycobacterium tuberculosis and Mycobacterium marinum to map the stress responses that follow upon exposure to subinhibitory concentrations of antibiotics with known targets, ciprofloxacin, ethambutol, isoniazid, streptomycin, and rifampin. The resulting data set comprises the first overview of transcriptional stress responses of mycobacteria to different antibiotics. We show that antibiotics can be distinguished based on their specific transcriptional stress fingerprint. Notably, this fingerprint was more distinctive in M. marinum We decided to use this to our advantage and continue with this model organism. A selection of diverse antibiotic stress genes was used to construct stress reporters. In total, three functional reporters were constructed to respond to DNA damage, cell wall damage, and ribosomal inhibition. Subsequently, these reporter strains were used to screen a small anti-TB compound library to predict the mode of action. In doing so, we identified the putative modes of action for three novel compounds, which confirms the utility of our approach.

18 citations


Cites background from "Efflux Pumps of Mycobacterium tuber..."

  • ...In addition, the presence of effective efflux pumps and a chromosomally encoded beta-lactamase also significantly reduce the intracellular half-lives of compounds, and thus, drug activity (8)....

    [...]

Journal ArticleDOI
TL;DR: A review summarises the current state of knowledge surrounding drug-related efflux pumps in M. tuberculosis and presents recent updates within the field of mycobacterial EPIs with a view to aiding the design of an effective adjunct therapy to overcome efflux-mediated resistance in TB as discussed by the authors.

17 citations

Book ChapterDOI
01 Jan 2016
TL;DR: Understanding the mechanisms underlying drug efflux, efflux pump regulation and their contribution for pathogenicity not only enables the development of more rapid and accurate tools for the guidance of antituberculosis therapy but also provides knowledge for thedevelopment of new therapeutic strategies.
Abstract: The emergence of multidrug and extensively drug-resistant tuberculosis represents a major threat to the control of the disease. Antimicrobial drug resistance in Mycobacterium tuberculosis is not merely a consequence of the occurrence of gene mutations in the drug targets but a balance between the acquisition of mutations and drug efflux. The low permeability of the mycobacterial cell wall acts synergistically with active drug efflux pumps, and this combined mechanism may particularly constitute the first step for the development of drug resistance. Besides drug efflux, efflux pumps also have physiological functions in the bacteria, and their expression is subjected to tight regulation in response to multiple environmental and physiological signals. Understanding the mechanisms underlying drug efflux, efflux pump regulation and their contribution for pathogenicity not only enables the development of more rapid and accurate tools for the guidance of antituberculosis therapy but also provides knowledge for the development of new therapeutic strategies.

17 citations

Journal ArticleDOI
TL;DR: In this article , a review summarises the current state of knowledge surrounding drug-related efflux pumps in M. tuberculosis and presents recent updates within the field of mycobacterial EPIs with a view to aiding the design of an effective adjunct therapy to overcome efflux-mediated resistance in TB.

17 citations

References
More filters
Journal ArticleDOI
TL;DR: Evidence is presented that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and it is proposed that these pumps therefore have greater clinical relevance than is usually attributed to them.
Abstract: It is well established that multidrug-resistance efflux pumps encoded by bacteria can confer clinically relevant resistance to antibiotics. It is now understood that these efflux pumps also have a physiological role(s). They can confer resistance to natural substances produced by the host, including bile, hormones and host-defence molecules. In addition, some efflux pumps of the resistance nodulation division (RND) family have been shown to have a role in the colonization and the persistence of bacteria in the host. Here, I present the accumulating evidence that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and propose that these pumps therefore have greater clinical relevance than is usually attributed to them.

1,367 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...tuberculosis within its human host, as well (25)....

    [...]

Journal ArticleDOI
TL;DR: The microbial transcriptome served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.
Abstract: Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.

1,352 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...Several efflux pumps and their regulators are also induced during macrophage infection (1, 20, 32, 34)....

    [...]

Journal ArticleDOI
TL;DR: This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans, and suggests that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche.
Abstract: Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.

1,078 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...No efflux pump inhibitor has yet reached clinical practice, but it is clear that this area of drug development offers a lot of promise, as it will further enhance the effective use of several drugs that have previously been considered to be of great clinical value and also new molecules that are currently under development (24)....

    [...]

  • ...This is possible because of the redundancy of their functions, which may overlap extensively (24, 27)....

    [...]

Journal ArticleDOI
Keith Poole1
TL;DR: Given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Abstract: Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

979 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...This is possible because of the redundancy of their functions, which may overlap extensively (24, 27)....

    [...]

Journal ArticleDOI
20 Aug 2009-Drugs
TL;DR: The multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Abstract: Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

755 citations