scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efflux Pumps of Mycobacterium tuberculosis Play a Significant Role in Antituberculosis Activity of Potential Drug Candidates

01 May 2012-Antimicrobial Agents and Chemotherapy (American Society for Microbiology)-Vol. 56, Iss: 5, pp 2643-2651
TL;DR: It is shown that these four efflux pump KO mutants of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds and inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis.
Abstract: Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.
Citations
More filters
Journal ArticleDOI
TL;DR: Overexpression of EP genes can contribute to the emergence of a MDR phenotype in M. tuberculosis and inhibition of EPs may provide a promising strategy for improving tuberculosis treatment outcomes in patients infected with M/XDR-TB isolates.
Abstract: Objectives Active extrusion of antituberculosis drugs via efflux pumps (EPs) has been suggested as contributing to drug resistance in Mycobacterium tuberculosis. This study was conducted to determine the role of 10 drug efflux transporters in the development of drug resistance in a series of clinical M. tuberculosis isolates. Methods A total of 31 clinical M. tuberculosis isolates without drug exposure [21 multi/extensively drug-resistant (M/XDR-TB) and 10 drug-susceptible isolates] were studied. The expression profile of 10 EP genes, including efpA, mmr, stp, drrA, drrB, mmpL7, Rv1250, Rv1634, Rv2994 and Rv1258c, was investigated against the H37Rv standard strain by quantitative reverse transcription PCR (RT-qPCR). Results Among the 21 M/XDR-TB isolates, 10 showed significantly increased levels of gene expression (>4-fold) for at least one of the studied EPs. Moreover, of the isolates with overexpressed genes, three and seven lacked genetic alterations in the surveyed regions of the rpoB + katG + inhA and katG + inhA genes, respectively. Whilst no elevation was observed in the expression of mmr, Rv1250, Rv1634 and Rv1258c genes in any of the isolates, drrA, stp and drrB were found to be the most commonly overexpressed, being overexpressed in seven, five and three isolates, respectively. Decreased minimum inhibitory concentrations (MICs) of rifampicin, but not isoniazid, were observed in the presence of the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Conclusion Overexpression of EP genes can contribute to the emergence of a MDR phenotype in M. tuberculosis. Inhibition of EPs may provide a promising strategy for improving tuberculosis treatment outcomes in patients infected with M/XDR-TB isolates.

16 citations

Journal ArticleDOI
TL;DR: Investigation of the mRNA expression level of the Rv1250 efflux pump gene in Mycobacterium tuberculosis isolated from individuals with tuberculosis who received drug therapy, at the 1st, 3rd and 5th months, and newly diagnosed patients with TB who will receive drug therapy (0 month).
Abstract: Efflux pumps are transmembrane proteins that vigorously participate in extruding a wide range of substrates, including drugs, outside the bacterial cell. We aimed to investigate the mRNA expression level of the Rv1250 efflux pump gene in Mycobacterium tuberculosis isolated from individuals with tuberculosis who received drug therapy, at the 1st, 3rd and 5th months, and newly diagnosed patients with tuberculosis who will receive drug therapy (0 month). The study was a multiple cross-sectional longitudinal design—50 different M. tuberculosis isolates and a reference strain H37Rv were subcultured in LJ medium and confirmed by multiplex PCR for identification of M. tuberculosis and collected for RNA extraction. Total bacterial mRNA was analysed using real-time quantitative PCR to evaluate mRNA quantification gene expression. There were differences in the level of Rv1250 mRNA expression between sensitive (n = 11) and resistant (n = 40) groups of 5.961 ± 0.414 and 10.192 ± 1.978, respectively (fold changes; p

16 citations

Journal ArticleDOI
Zhe Zhang1, Jie Yan1, Kaijin Xu1, Zhongkang Ji1, Lanjuan Li1 
TL;DR: Combinational application of tetrandrine with INH or EMB increased drug efficacy and may help to reduce drug dosage thus alleviate side effects.
Abstract: Tetrandrine is a natural chemical product purified from fourstamen stephania root which recently has been shown to act similarly as synthesized drug efflux pump inhibitor verapamil. The aim of the study is to examine whether tetrandrine could potentiate anti-tubercular drugs to which Mycobacterium tuberculosis (MTB) has turned resistant via efflux mechanisms. We screened 200 MTB clinical isolates using drug sensitivity test to look for those who have turned resistant to the drugs most probably due to efflux mechanisms. We found 29 isoniazid (INH) and ethambutol (EMB) - dual resistant (IEDR) strains. Then we tested if treatment with tetrandrine or verapamil could reverse drug resistance to INH and/or EMB in IEDR isolates. There is a parallel resistance among EMB- and INH-resistant strains in the tested clinical isolates. Among INH-resistant strains, 65% was also EMB-resistant. This suggests an involvement of efflux mechanisms which can lead to dual drug resistance in IEDR clinical isolates. Similar to a synthesized efflux pump inhibitor verapamil, tetrandrine treatment together with INH or EMB brought down the MICs from the clinical level of drug resistance to the sensitive range of both drugs. The effective rate reached 82% among IEDR clinical isolates. Combinational application of tetrandrine with INH or EMB increased drug efficacy. Drugs like tetrandrine may help to reduce drug dosage thus alleviate side effects.

16 citations


Cites background from "Efflux Pumps of Mycobacterium tuber..."

  • ...It is possible that drug resistance mediated by different mechanisms co-exists in one strain, but efflux pump may play a more important role [26,27]....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that high potency and selectivity can be achieved at the lipoamide-binding site of Mtb Lpd, a site different from the NAD⁺/NADH pocket targeted by previously reported species-selective triazaspirodimethoxybenzoyl inhibitors.
Abstract: Tuberculosis remains a global health emergency that calls for treatment regimens directed at new targets. Here we explored lipoamide dehydrogenase (Lpd), a metabolic and detoxifying enzyme in Mycobacterium tuberculosis (Mtb) whose deletion drastically impairs Mtb’s ability to establish infection in the mouse. Upon screening more than 1.6 million compounds, we identified N-methylpyridine 3-sulfonamides as potent and species-selective inhibitors of Mtb Lpd affording >1000-fold selectivity versus the human homologue. The sulfonamides demonstrated low nanomolar affinity and bound at the lipoamide channel in an Lpd–inhibitor cocrystal. Their selectivity could be attributed, at least partially, to hydrogen bonding of the sulfonamide amide oxygen with the species variant Arg93 in the lipoamide channel. Although potent and selective, the sulfonamides did not enter mycobacteria, as determined by their inability to accumulate in Mtb to effective levels or to produce changes in intracellular metabolites. This work d...

15 citations

Journal ArticleDOI
04 Dec 2020-Biology
TL;DR: Known ABC transporters from M. tuberculosis are reviewed, with particular focus on the diversity of their structural features and relevance in infection and drug resistance, and the potential targets for studies aiming to control the microorganism and structural features.
Abstract: Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), a disease that affects millions of people in the world and that is associated with several human diseases. The bacillus is highly adapted to infect and survive inside the host, mainly because of its cellular envelope plasticity, which can be modulated to adapt to an unfriendly host environment; to manipulate the host immune response; and to resist therapeutic treatment, increasing in this way the drug resistance of TB. The superfamily of ATP-Binding Cassette (ABC) transporters are integral membrane proteins that include both importers and exporters. Both types share a similar structural organization, yet only importers have a periplasmic substrate-binding domain, which is essential for substrate uptake and transport. ABC transporter-type importers play an important role in the bacillus physiology through the transport of several substrates that will interfere with nutrition, pathogenesis, and virulence. Equally relevant, exporters have been involved in cell detoxification, nutrient recycling, and antibiotics and drug efflux, largely affecting the survival and development of multiple drug-resistant strains. Here, we review known ABC transporters from M. tuberculosis, with particular focus on the diversity of their structural features and relevance in infection and drug resistance.

15 citations


Cites background from "Efflux Pumps of Mycobacterium tuber..."

  • ...mice [114,115] and development in the central nervous system of BALB/c mice [86]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Evidence is presented that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and it is proposed that these pumps therefore have greater clinical relevance than is usually attributed to them.
Abstract: It is well established that multidrug-resistance efflux pumps encoded by bacteria can confer clinically relevant resistance to antibiotics. It is now understood that these efflux pumps also have a physiological role(s). They can confer resistance to natural substances produced by the host, including bile, hormones and host-defence molecules. In addition, some efflux pumps of the resistance nodulation division (RND) family have been shown to have a role in the colonization and the persistence of bacteria in the host. Here, I present the accumulating evidence that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and propose that these pumps therefore have greater clinical relevance than is usually attributed to them.

1,367 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...tuberculosis within its human host, as well (25)....

    [...]

Journal ArticleDOI
TL;DR: The microbial transcriptome served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.
Abstract: Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.

1,352 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...Several efflux pumps and their regulators are also induced during macrophage infection (1, 20, 32, 34)....

    [...]

Journal ArticleDOI
TL;DR: This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans, and suggests that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche.
Abstract: Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.

1,078 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...No efflux pump inhibitor has yet reached clinical practice, but it is clear that this area of drug development offers a lot of promise, as it will further enhance the effective use of several drugs that have previously been considered to be of great clinical value and also new molecules that are currently under development (24)....

    [...]

  • ...This is possible because of the redundancy of their functions, which may overlap extensively (24, 27)....

    [...]

Journal ArticleDOI
Keith Poole1
TL;DR: Given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Abstract: Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

979 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...This is possible because of the redundancy of their functions, which may overlap extensively (24, 27)....

    [...]

Journal ArticleDOI
20 Aug 2009-Drugs
TL;DR: The multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Abstract: Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

755 citations