scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efflux Pumps of Mycobacterium tuberculosis Play a Significant Role in Antituberculosis Activity of Potential Drug Candidates

01 May 2012-Antimicrobial Agents and Chemotherapy (American Society for Microbiology)-Vol. 56, Iss: 5, pp 2643-2651
TL;DR: It is shown that these four efflux pump KO mutants of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds and inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis.
Abstract: Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.
Citations
More filters
Journal ArticleDOI
TL;DR: Timcodar reduced the likelihood of a relapse infection when evaluated in a mouse model of long-term, chronic infection with treatment with a combination of rifampin, isoniazid, and timcodar, and suggest that the antimycobacterial drug-potentiating activity of tim codar is complex and drug dependent and involves both bacterial and host-targeted mechanisms.
Abstract: Previous studies indicated that inhibition of efflux pumps augments tuberculosis therapy. In this study, we used timcodar (formerly VX-853) to determine if this efflux pump inhibitor could increase the potency of antituberculosis (anti-TB) drugs against Mycobacterium tuberculosis in in vitro and in vivo combination studies. When used alone, timcodar weakly inhibited M. tuberculosis growth in broth culture (MIC, 19 μg/ml); however, it demonstrated synergism in drug combination studies with rifampin, bedaquiline, and clofazimine but not with other anti-TB agents. When M. tuberculosis was cultured in host macrophage cells, timcodar had about a 10-fold increase (50% inhibitory concentration, 1.9 μg/ml) in the growth inhibition of M. tuberculosis and demonstrated synergy with rifampin, moxifloxacin, and bedaquiline. In a mouse model of tuberculosis lung infection, timcodar potentiated the efficacies of rifampin and isoniazid, conferring 1.0 and 0.4 log10 reductions in bacterial burden in lung, respectively, compared to the efficacy of each drug alone. Furthermore, timcodar reduced the likelihood of a relapse infection when evaluated in a mouse model of long-term, chronic infection with treatment with a combination of rifampin, isoniazid, and timcodar. Although timcodar had no effect on the pharmacokinetics of rifampin in plasma and lung, it did increase the plasma exposure of bedaquiline. These data suggest that the antimycobacterial drug-potentiating activity of timcodar is complex and drug dependent and involves both bacterial and host-targeted mechanisms. Further study of the improvement of the potency of antimycobacterial drugs and drug candidates when used in combination with timcodar is warranted.

37 citations


Cites background or methods from "Efflux Pumps of Mycobacterium tuber..."

  • ...Furthermore, other efflux pumps have been described to play a more important role in drug resistance of M. tuberculosis, including the small multidrug-resistant (SMR) pump Rv1218c, the ATP-binding cassette (ABC) transporter Rv2459, and Rv3065 (12–14)....

    [...]

  • ...338 339 340 Discussion 341 Co-administration of efflux pump inhibitors with other drugs has been 342 described as a method of improving drug therapies targeting both mammalian 343 and microbial cells (2-5, 24-28), including Mtb (8, 9, 12, 13, 29, 30)....

    [...]

  • ...Furthermore, other efflux pumps have been described to play a more 75 important role in drug resistance of Mtb, including the small multidrug resistant 76 (SMR) pump Rv1218c, the ATP-binding cassette (ABC) transporter Rv2459, and 77 Rv3065 (12-14)....

    [...]

Journal ArticleDOI
TL;DR: Comprehensive comparative sequence and structural analysis, which revealed topological signatures shared by the MmpL proteins and RND (Resistance Nodulation Division) multidrug efflux transporters provide evidence in support of the notion that they belong to the extended RND permeases superfamily.

36 citations


Cites background from "Efflux Pumps of Mycobacterium tuber..."

  • ...There 98 are reported evidences revealing the presence of antibiotic efflux pumps of ABC and SMR 99 family in Mtb (Balganesh et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: The feasibility of employing bacteria as a tool to screen for EPI’s targeting ABC pumps of cancerous cells is reasoned out and the importance of efflux pump inhibitors (EPI) to mitigate drug resistance is underscore.
Abstract: Drug resistance is a serious concern in a clinical setting jeopardizing treatment for both infectious agents and cancers alike. The wide-spread emergence of multi-drug resistant (MDR) phenotypes fr...

35 citations


Cites background from "Efflux Pumps of Mycobacterium tuber..."

  • ...Well-known transporters from the SMR category include EmrE in E. coli and P. aeruginosa, Smr/Qac in S. aureus and Tbsmr (Rv3065) in M. tuberculosis (Yerushalmi et al. 1995; Brown and Skurray 2001; Li et al. 2003; Balganesh et al. 2012)....

    [...]

Journal ArticleDOI
TL;DR: The structure-activity relationships detailed here emphasize the need to examine efflux-mediated resistance in the design of antituberculosis drugs and demonstrate that it is possible to overcome intrinsic efflux with synthetic modification.
Abstract: Spectinamides are a novel class of antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Their antitubercular activity is derived from both ribosomal affinity and their ability to overcome intrinsic efflux mediated by the Mycobacterium tuberculosis Rv1258c efflux pump. This study explores the structure–activity relationships through analysis of 50 targeted spectinamides. Compounds are evaluated for ribosomal translational inhibition, MIC activity in Rv1258c efflux pump deficient and wild type tuberculosis strains, and efficacy in an acute model of tuberculosis infection. The results of this study show a narrow structure–activity relationship, consistent with a tight ribosome-binding pocket and strict structural requirements to overcome native efflux. Rationalization of ribosomal inhibition data using molecular dynamics simulations showed stable complex formation for halogenated spectinamides consistent with the long post antibiotic effects observed. The lead spectinamid...

35 citations

Journal ArticleDOI
TL;DR: This Perspective critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis and highlights the main challenges and strategies for developing new TB drugs.
Abstract: Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.

34 citations

References
More filters
Journal ArticleDOI
TL;DR: Evidence is presented that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and it is proposed that these pumps therefore have greater clinical relevance than is usually attributed to them.
Abstract: It is well established that multidrug-resistance efflux pumps encoded by bacteria can confer clinically relevant resistance to antibiotics. It is now understood that these efflux pumps also have a physiological role(s). They can confer resistance to natural substances produced by the host, including bile, hormones and host-defence molecules. In addition, some efflux pumps of the resistance nodulation division (RND) family have been shown to have a role in the colonization and the persistence of bacteria in the host. Here, I present the accumulating evidence that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and propose that these pumps therefore have greater clinical relevance than is usually attributed to them.

1,367 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...tuberculosis within its human host, as well (25)....

    [...]

Journal ArticleDOI
TL;DR: The microbial transcriptome served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.
Abstract: Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.

1,352 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...Several efflux pumps and their regulators are also induced during macrophage infection (1, 20, 32, 34)....

    [...]

Journal ArticleDOI
TL;DR: This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans, and suggests that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche.
Abstract: Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.

1,078 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...No efflux pump inhibitor has yet reached clinical practice, but it is clear that this area of drug development offers a lot of promise, as it will further enhance the effective use of several drugs that have previously been considered to be of great clinical value and also new molecules that are currently under development (24)....

    [...]

  • ...This is possible because of the redundancy of their functions, which may overlap extensively (24, 27)....

    [...]

Journal ArticleDOI
Keith Poole1
TL;DR: Given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Abstract: Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

979 citations


"Efflux Pumps of Mycobacterium tuber..." refers background in this paper

  • ...This is possible because of the redundancy of their functions, which may overlap extensively (24, 27)....

    [...]

Journal ArticleDOI
20 Aug 2009-Drugs
TL;DR: The multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Abstract: Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

755 citations