scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ElaStic: A tool for calculating second-order elastic constants from first principles

01 Aug 2013-Computer Physics Communications (North-Holland)-Vol. 184, Iss: 8, pp 1861-1873
TL;DR: This paper presents ElaStic, a tool that is able to calculate the full second-order elastic stiffness tensor for any crystal structure from total-energy and/or stress calculations, and proposes a new approach to obtain the most reliable results.
About: This article is published in Computer Physics Communications.The article was published on 2013-08-01. It has received 341 citations till now. The article focuses on the topics: Elastic energy & Hooke's law.
Citations
More filters
Journal ArticleDOI
TL;DR: VASPKIT as mentioned in this paper is a command-line program that aims at providing a robust and user-friendly interface to perform high-throughput analysis of a variety of material properties from the raw data produced by the VASP code.

1,357 citations

Journal ArticleDOI
TL;DR: The Crystal program as discussed by the authors adopts atom-centered Gaussian-type functions as a basis set, which makes it possible to perform all-electron as well as pseudopotential calculations.
Abstract: The latest release of the Crystal program for solid-state quantum-mechanical ab initio simulations is presented. The program adopts atom-centered Gaussian-type functions as a basis set, which makes it possible to perform all-electron as well as pseudopotential calculations. Systems of any periodicity can be treated at the same level of accuracy (from 0D molecules, clusters and nanocrystals, to 1D polymers, helices, nanorods, and nanotubes, to 2D monolayers and slab models for surfaces, to actual 3D bulk crystals), without any artificial repetition along nonperiodic directions for 0–2D systems. Density functional theory calculations can be performed with a variety of functionals belonging to several classes: local-density (LDA), generalized-gradient (GGA), meta-GGA, global hybrid, range-separated hybrid, and self-consistent system-specific hybrid. In particular, hybrid functionals can be used at a modest computational cost, comparable to that of pure LDA and GGA formulations, because of the efficient implementation of exact nonlocal Fock exchange. Both translational and point-symmetry features are fully exploited at all steps of the calculation, thus drastically reducing the corresponding computational cost. The various properties computed encompass electronic structure (including magnetic spin-polarized open-shell systems, electron density analysis), geometry (including full or constrained optimization, transition-state search), vibrational properties (frequencies, infrared and Raman intensities, phonon density of states), thermal properties (quasi-harmonic approximation), linear and nonlinear optical properties (static and dynamic [hyper]polarizabilities), strain properties (elasticity, piezoelectricity, photoelasticity), electron transport properties (Boltzmann, transport across nanojunctions), as well as X-ray and inelastic neutron spectra. The program is distributed in serial, parallel, and massively parallel versions. In this paper, the original developments that have been devised and implemented in the last 4 years (since the distribution of the previous public version, Crystal14, occurred in December 2013) are described.

1,108 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the largest database of calculated elastic properties for inorganic compounds to date, which contains full elastic information for 1,181 compounds, and this number is growing steadily.
Abstract: The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design.

614 citations

Journal ArticleDOI
TL;DR: This work reports on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties.
Abstract: We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.

556 citations

01 Jan 2015
Abstract: The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design.

384 citations

References
More filters
Journal ArticleDOI
Peter E. Blöchl1
TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Abstract: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The method allows high-quality first-principles molecular-dynamics calculations to be performed using the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function. The augmentation procedure is generalized in that partial-wave expansions are not determined by the value and the derivative of the envelope function at some muffin-tin radius, but rather by the overlap with localized projector functions. The pseudopotential approach based on generalized separable pseudopotentials can be regained by a simple approximation.

61,450 citations


"ElaStic: A tool for calculating sec..." refers methods in this paper

  • ...SOECs calculated using the PAW method [47], are very close to the ones obtained by the WIEN2k code....

    [...]

Journal ArticleDOI
TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Abstract: A method is given for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or over specified portions thereof. This method also has applications in spectral and density-of-state calculations. The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.

51,059 citations


"ElaStic: A tool for calculating sec..." refers methods in this paper

  • ...For the integration over the Brillouin zone, we have employed the improved tetrahedron [31] method as well as summations over special points within the Monkhorst–Pack [32] scheme....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

47,477 citations

Journal ArticleDOI
TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Abstract: This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathrm{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathrm{r})]$, independent of $v(\mathrm{r})$, such that the expression $E\ensuremath{\equiv}\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathrm{r})$. The functional $F[n(\mathrm{r})]$ is then discussed for two situations: (1) $n(\mathrm{r})={n}_{0}+\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}(\mathrm{r})$, $\frac{\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}}{{n}_{0}}\ensuremath{\ll}1$, and (2) $n(\mathrm{r})=\ensuremath{\phi}(\frac{\mathrm{r}}{{r}_{0}})$ with $\ensuremath{\phi}$ arbitrary and ${r}_{0}\ensuremath{\rightarrow}\ensuremath{\infty}$. In both cases $F$ can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.

38,160 citations

17 Jun 1964

28,969 citations


"ElaStic: A tool for calculating sec..." refers methods in this paper

  • ...In all these codes, the Kohn–Sham (KS) equations of DFT [13] is solved self-consistently....

    [...]

  • ...The current implementation of ElaStic is interfaced with the computer packages exciting, WIEN2k, and Quantum ESPRESSO, all of them based on DFT [12,13]....

    [...]