scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks

TL;DR: This work introduces the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, proves that it is also NP-complete and presents various algorithms to solve it.
Abstract: Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique for optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments. We consider the planning problem of an OFDM optical network, where we are given a traffic matrix that includes the requested transmission rates of the connections to be served. Connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers and choosing an appropriate modulation level, taking into account the transmission distance. We introduce the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, prove that is also NP-complete and present various algorithms to solve it. We start by presenting an optimal ILP RMLSA algorithm that minimizes the spectrum used to serve the traffic matrix, and also present a decomposition method that breaks RMLSA into its two substituent subproblems, namely 1) routing and modulation level and 2) spectrum allocation (RML+SA), and solves them sequentially. We also propose a heuristic algorithm that serves connections one-by-one and use it to solve the planning problem by sequentially serving all the connections in the traffic matrix. In the sequential algorithm, we investigate two policies for defining the order in which connections are considered. We also use a simulated annealing meta-heuristic to obtain even better orderings. We examine the performance of the proposed algorithms through simulation experiments and evaluate the spectrum utilization benefits that can be obtained by utilizing OFDM elastic bandwidth allocation, when compared to a traditional WDM network.
Citations
More filters
Journal ArticleDOI
TL;DR: A tutorial that covers the key aspects of elastic optical networks, and explores the experimental demonstrations that have tested the functionality of the elastic optical network, along with the research challenges and open issues posed by flexible networks.
Abstract: Flexgrid technology is now considered to be a promising solution for future high-speed network design. In this context, we need a tutorial that covers the key aspects of elastic optical networks. This tutorial paper starts with a brief introduction of the elastic optical network and its unique characteristics. The paper then moves to the architecture of the elastic optical network and its operation principle. To complete the discussion of network architecture, this paper focuses on the different node architectures, and compares their performance in terms of scalability and flexibility. Thereafter, this paper reviews and classifies routing and spectrum allocation (RSA) approaches including their pros and cons. Furthermore, various aspects, namely, fragmentation, modulation, quality-of-transmission, traffic grooming, survivability, energy saving, and networking cost related to RSA, are presented. Finally, the paper explores the experimental demonstrations that have tested the functionality of the elastic optical network, and follows that with the research challenges and open issues posed by flexible networks.

547 citations

Book ChapterDOI
25 Oct 2010
TL;DR: This work introduces the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, proves that it is also NP-complete and presents various algorithms to solve it.
Abstract: Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique for optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments. We consider the planning problem of an OFDM optical network, where connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers and choosing an appropriate modulation level taking into account the transmission distance. Using algorithms developed in our previous works, we evaluate the spectrum utilization gains that can be obtained by utilizing the elastic bandwidth allocation of OFDM, when compared to a traditional WDM network.

537 citations

Journal ArticleDOI
TL;DR: The simulation results have demonstrated that the proposed HSMR schemes can effectively reduce the bandwidth blocking probability (BBP) of dynamic RMSA, as compared to two benchmark algorithms that use single-path routing and split spectrum.
Abstract: Empowered by the optical orthogonal frequency-division multiplexing (O-OFDM) technology, flexible online service provisioning can be realized with dynamic routing, modulation, and spectrum assignment (RMSA). In this paper, we propose several online service provisioning algorithms that incorporate dynamic RMSA with a hybrid single-/multi-path routing (HSMR) scheme. We investigate two types of HSMR schemes, namely HSMR using online path computation (HSMR-OPC) and HSMR using fixed path sets (HSMR-FPS). Moreover, for HSMR-FPS, we analyze several path selection policies to optimize the design. We evaluate the proposed algorithms with numerical simulations using a Poisson traffic model and two mesh network topologies. The simulation results have demonstrated that the proposed HSMR schemes can effectively reduce the bandwidth blocking probability (BBP) of dynamic RMSA, as compared to two benchmark algorithms that use single-path routing and split spectrum. Our simulation results suggest that HSMR-OPC can achieve the lowest BBP among all HSMR schemes. This is attributed to the fact that HSMR-OPC optimizes routing paths for each request on the fly with considerations of both bandwidth utilizations and lengths of links. Our simulation results also indicate that the HSMR-FPS scheme that use the largest slots-over-square-of-hops first path-selection policy obtains the lowest BBP among all HSMR-FPS schemes. We then investigate the proposed algorithms' impacts on other network performance metrics, including network throughput and network bandwidth fragmentation ratio. To the best of our knowledge, this is the first attempt to consider dynamic RMSA based on both online path computation and offline path computation with various path selection policies for multipath provisioning in O-OFDM networks.

446 citations

Journal ArticleDOI
TL;DR: A novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future.
Abstract: Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed.

406 citations

Journal ArticleDOI
TL;DR: The way LM and DR are currently being performed and their operation in long-distance networking environments are presented, discussing related issues and bottlenecks and surveying other works.
Abstract: We study the virtual machine live migration (LM) and disaster recovery (DR) from a networking perspective, considering long-distance networks, for example, between data centers. These networks are usually constrained by limited available bandwidth, increased latency and congestion, or high cost of use when dedicated network resources are used, while their exact characteristics cannot be controlled. LM and DR present several challenges due to the large amounts of data that need to be transferred over long-distance networks, which increase with the number of migrated or protected resources. In this context, our work presents the way LM and DR are currently being performed and their operation in long-distance networking environments, discussing related issues and bottlenecks and surveying other works. We also present the way networks are evolving today and the new technologies and protocols (e.g., software-defined networking, or SDN, and flexible optical networks) that can be used to boost the efficiency of LM and DR over long distances. Traffic redirection in a long-distance environment is also an important part of the whole equation, since it directly affects the transparency of LM and DR. Related works and solutions both from academia and the industry are presented.

331 citations


Cites background from "Elastic Bandwidth Allocation in Fle..."

  • ...…of rapid change in optical networking technology, as fixed-grid WDM networks are evolving into Mixed Line Rate (MLR) networks and will soon give way to flexi-grid (“elastic,” “adaptive,” or “tunable”) networks, promising 400Gbps of bandwidth [Gerstel et al. 2012; Christodoulopoulos et al. 2011]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NPcomplete problems, more.
Abstract: This clearly written , mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NPcomplete problems, more All chapters are supplemented by thoughtprovoking problems A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering Mathematicians wishing a self-contained introduction need look no further—American Mathematical Monthly 1982 ed

7,221 citations


"Elastic Bandwidth Allocation in Fle..." refers methods in this paper

  • ...We initially present an optimal integer linear programming (ILP) formulation [19] that minimizes the utilized spectrum....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors give a tutorial overview of OFDM and highlight the aspects that are likely to be important in optical applications, and discuss the constraints imposed by single mode optical fiber, multimode optical fiber and optical wireless.
Abstract: Orthogonal frequency division multiplexing (OFDM) is a modulation technique which is now used in most new and emerging broadband wired and wireless communication systems because it is an effective solution to intersymbol interference caused by a dispersive channel. Very recently a number of researchers have shown that OFDM is also a promising technology for optical communications. This paper gives a tutorial overview of OFDM highlighting the aspects that are likely to be important in optical applications. To achieve good performance in optical systems OFDM must be adapted in various ways. The constraints imposed by single mode optical fiber, multimode optical fiber and optical wireless are discussed and the new forms of optical OFDM which have been developed are outlined. The main drawbacks of OFDM are its high peak to average power ratio and its sensitivity to phase noise and frequency offset. The impairments that these cause are described and their implications for optical systems discussed.

1,761 citations

Journal ArticleDOI
TL;DR: This article proposes a novel, spectrum- efficient, and scalable optical transport network architecture called SLICE, which enables sub-wavelength, superwa wavelength, and multiple-rate data traffic accommodation in a highly spectrum-efficient manner, thereby providing a fractional bandwidth service.
Abstract: The sustained growth of data traffic volume calls for an introduction of an efficient and scalable transport platform for links of 100 Gb/s and beyond in the future optical network. In this article, after briefly reviewing the existing major technology options, we propose a novel, spectrum- efficient, and scalable optical transport network architecture called SLICE. The SLICE architecture enables sub-wavelength, superwavelength, and multiple-rate data traffic accommodation in a highly spectrum-efficient manner, thereby providing a fractional bandwidth service. Dynamic bandwidth variation of elastic optical paths provides network operators with new business opportunities offering cost-effective and highly available connectivity services through time-dependent bandwidth sharing, energy-efficient network operation, and highly survivable restoration with bandwidth squeezing. We also discuss an optical orthogonal frequency-division multiplexing-based flexible-rate transponder and a bandwidth-variable wavelength cross-connect as the enabling technologies of SLICE concept. Finally, we present the performance evaluation and technical challenges that arise in this new network architecture.

1,489 citations


"Elastic Bandwidth Allocation in Fle..." refers background in this paper

  • ...path. Enabling technologies and sub-systems, such as bandwidth-variable transponders and bandwidth-variable OXCs, have been demonstrated in the Spectrum-sLICed Elastic optical path network (“SLICE”) [ 8 ]‐[11]....

    [...]

  • ...Fig. 1 presents an example of elastic bandwidth provisioning in the spectrum domain by controlling the number of used subcarriers [ 8 ], [9]....

    [...]

Journal ArticleDOI
TL;DR: A concept of a novel adaptation scheme in SLICE called distance-adaptive spectrum resource allocation, which can save more than 45 percent of required spectrum resources for a 12-node ring network, is presented.
Abstract: The rigid nature of current wavelength-routed optical networks brings limitations on network utilization efficiency. One limitation originates from mismatch of granularities between the client layer and the wavelength layer. The recently proposed spectrum-sliced elastic optical path network (SLICE) is expected to mitigate this problem by adaptively allocating spectral resources according to client traffic demands. This article discusses another limitation of the current optical networks associated with worst case design in terms of transmission performance. In order to address this problem, we present a concept of a novel adaptation scheme in SLICE called distance-adaptive spectrum resource allocation. In the presented scheme the minimum necessary spectral resource is adaptively allocated according to the end-to-end physical condition of an optical path. Modulation format and optical filter width are used as parameters to determine the necessary spectral resources to be allocated for an optical path. Evaluation of network utilization efficiency shows that distance-adaptive SLICE can save more than 45 percent of required spectrum resources for a 12-node ring network. Finally, we introduce the concept of a frequency slot to extend the current frequency grid standard, and discuss possible spectral resource designation schemes.

831 citations

Journal ArticleDOI
TL;DR: This tutorial gives an introduction to optical burst switching and compare it with other existing optical switching paradigms, and describes a prevailing protocol for OBS networks called just-enough-time (JET).
Abstract: In this tutorial, we give an introduction to optical burst switching and compare it with other existing optical switching paradigms. Basic burst assembly algorithms and their effect on assembled burst traffic characteristics are described first. Then a brief review of the early work on burst transmission is provided, followed by a description of a prevailing protocol for OBS networks called just-enough-time (JET). Algorithms used as an OBS core node for burst scheduling as well as contention resolution strategies are presented next. Trade-offs between their performance and implementation complexities are discussed. Recent work on QoS support, IP/WDM multicast, TCP performance in OBS networks, and labeled OBS is also described, and several open issues are mentioned.

519 citations


"Elastic Bandwidth Allocation in Fle..." refers background in this paper

  • ...Approaches such as optical burst switching (OBS) and optical packet switching (OPS) that meet these requirements can only be viewed as long-term solutions since their enabling technologies are not yet mature [2][3]....

    [...]