scispace - formally typeset
Open AccessJournal ArticleDOI

Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces

Reads0
Chats0
TLDR
In this article, a wide window in the near-infrared (wavelengths 1t o 3μm) where light scattering by lossless submicrometer Ge spherical particles is fully described by their induced electric and magnetic dipoles was found.
Abstract
Thecoherentcombinationofelectricandmagneticresponsesisthebasisoftheelectro- magnetic behavior of new engineered metamaterials. The basic constituents of their meta-atoms usually have metallic character and consequently high absorption losses. Based on standard "Mie" scattering theory, we found that there is a wide window in the near-infrared (wavelengths 1t o 3μm), where light scattering by lossless submicrometer Ge spherical particles is fully described by their induced electric and magnetic dipoles. The interference between electric and magneticdipolarfieldsisshowntoleadtoanisotropicangulardistributionsofscatteredintensity, including zero backward and almost zero forward scattered intensities at specific wavelengths, which until recently was theoretically established only for hypothetically postulated magnetodi- electric spheres. Although the scattering cross section at zero backward or forward scattering is exactly the same, radiation pressure forces are a factor of 3 higher in the zero forward condition.

read more

Citations
More filters
Journal ArticleDOI

Optically resonant dielectric nanostructures

TL;DR: How high-index dielectric nanoparticles can offer a substitute for plasmonic nanoparticle structures, providing a highly flexible and low-loss route to the manipulation of light at the nanoscale is reviewed.
Journal ArticleDOI

Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks

TL;DR: It is demonstrated theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light.
Journal ArticleDOI

Directional visible light scattering by silicon nanoparticles

TL;DR: It is shown that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size.
Journal ArticleDOI

Recent advances in planar optics: from plasmonic to dielectric metasurfaces

TL;DR: In this paper, a classification of metasurfaces based on their different phase mechanisms and profiles and a comparison between plasmonic and dielectric surfaces is presented. And the authors place particular emphasis on the recent developments on electric and magnetic field control of light with Dielectric nanostructures and highlight the physical mechanisms and designs required for efficient all-dielectric metamaterials.
Journal ArticleDOI

Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere

TL;DR: Experimental evidence is presented that a single low-loss dielectric subwavelength sphere of moderate refractive index radiates fields identical to those from equal amplitude crossed electric and magnetic dipoles, and indistinguishable from those of ideal magnetodielectric spheres, and these Kerker scattering conditions only depend on a/λ.
References
More filters
Book ChapterDOI

I and J

Book

Handbook of Optical Constants of Solids

TL;DR: In this paper, E.D. Palik and R.R. Potter, Basic Parameters for Measuring Optical Properties, and W.W.Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region.
Book

Absorption and Scattering of Light by Small Particles

TL;DR: In this paper, a Potpourri of Particles is used to describe surface modes in small Particles and the Angular Dependence of Scattering is shown to be a function of the size of the particles.
Journal ArticleDOI

Controlling Electromagnetic Fields

TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Journal ArticleDOI

Optical Conformal Mapping

TL;DR: A general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics is developed, which can be applied to escape detection by other electromagnetic waves or sound.
Related Papers (5)