scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electric-Field Controllable Metal-free Materials as Efficient Electrocatalysts for Nitrogen Fixation

Jie Wu1, Yang-Xin Yu1
04 Nov 2021-Journal of Physical Chemistry C (American Chemical Society (ACS))-Vol. 125, Iss: 43, pp 23699-23708
About: This article is published in Journal of Physical Chemistry C.The article was published on 2021-11-04 and is currently open access. It has received 21 citations till now. The article focuses on the topics: Electric field.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a facile and environmentally friendly approach was proposed to fabricate N, S-co-doped TiC/carbon hybrid aerogels with hierarchically porous architecture through MXene/cellulose hybrid hydrogels as precursors for adsorbing dyes, followed by freeze drying and carbonization process.

14 citations

Journal ArticleDOI
TL;DR: By employing density functional theory, the authors in this paper demonstrated that N2 can be efficiently activated on the B center due to the synergistic effect of B-N. And they found that the NRR happens predominantly by the alternating path with a small limiting potential of 0.13 V.
Abstract: The production of ammonia in a sustainable cost-effective manner and ambient conditions is a very challenging task. Photo-/electrocatalytic nitrogen reduction (NRR) is a convenient way to produce NH3 for industrial applications. In this work, anchoring B atoms in Tp-bpy-COF is shown to effectively reduce N2 to NH3. By employing density functional theory, we demonstrated that N2 can be efficiently activated on the B center due to the synergistic effect of B-N. Meanwhile, we found that the NRR happens predominantly by the alternating path with a small limiting potential of 0.13 V. Moreover, the suitable band edge positions and broad visible light absorption zone result in B@Tp-bpy-COF acting as a promising photocatalyst. Our proposed catalytic system exhibits favorable formation energy and excellent structural stability during AIMD simulations, which suggest the feasibility of experimental synthesis. The system turns out to be highly selective toward the NRR compared to other competitive reactions. These findings may pave a new way for designing SACs on COFs for N2 fixation with high activity, which may also apply to other reactions.

8 citations

Journal ArticleDOI
01 Jan 2023-Fuel
TL;DR: In this paper , the effects of added graphene substrate on its electronic property and sensitivity toward the gas reactants are compared with those on BP-TM and BP-SV-TM.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Abstract: A new density functional (DF) of the generalized gradient approximation (GGA) type for general chemistry applications termed B97-D is proposed. It is based on Becke's power-series ansatz from 1997 and is explicitly parameterized by including damped atom-pairwise dispersion corrections of the form C(6) x R(-6). A general computational scheme for the parameters used in this correction has been established and parameters for elements up to xenon and a scaling factor for the dispersion part for several common density functionals (BLYP, PBE, TPSS, B3LYP) are reported. The new functional is tested in comparison with other GGAs and the B3LYP hybrid functional on standard thermochemical benchmark sets, for 40 noncovalently bound complexes, including large stacked aromatic molecules and group II element clusters, and for the computation of molecular geometries. Further cross-validation tests were performed for organometallic reactions and other difficult problems for standard functionals. In summary, it is found that B97-D belongs to one of the most accurate general purpose GGAs, reaching, for example for the G97/2 set of heat of formations, a mean absolute deviation of only 3.8 kcal mol(-1). The performance for noncovalently bound systems including many pure van der Waals complexes is exceptionally good, reaching on the average CCSD(T) accuracy. The basic strategy in the development to restrict the density functional description to shorter electron correlation lengths scales and to describe situations with medium to large interatomic distances by damped C(6) x R(-6) terms seems to be very successful, as demonstrated for some notoriously difficult reactions. As an example, for the isomerization of larger branched to linear alkanes, B97-D is the only DF available that yields the right sign for the energy difference. From a practical point of view, the new functional seems to be quite robust and it is thus suggested as an efficient and accurate quantum chemical method for large systems where dispersion forces are of general importance.

23,058 citations

Journal ArticleDOI
TL;DR: In this paper, the DMol3 local orbital density functional method for band structure calculations of insulating and metallic solids is described and the method for calculating semilocal pseudopotential matrix elements and basis functions are detailed together with other unpublished parts of the methodology pertaining to gradient functionals and local orbital basis sets.
Abstract: Recent extensions of the DMol3 local orbital density functional method for band structure calculations of insulating and metallic solids are described. Furthermore the method for calculating semilocal pseudopotential matrix elements and basis functions are detailed together with other unpublished parts of the methodology pertaining to gradient functionals and local orbital basis sets. The method is applied to calculations of the enthalpy of formation of a set of molecules and solids. We find that the present numerical localized basis sets yield improved results as compared to previous results for the same functionals. Enthalpies for the formation of H, N, O, F, Cl, and C, Si, S atoms from the thermodynamic reference states are calculated at the same level of theory. It is found that the performance in predicting molecular enthalpies of formation is markedly improved for the Perdew–Burke–Ernzerhof [Phys. Rev. Lett. 77, 3865 (1996)] functional.

8,496 citations

Journal ArticleDOI
TL;DR: In this paper, an algorithm for the accurate calculation of dielectric screening effects in solvents is presented, which leads to rather simple expressions for the screening energy and its analytic gradient with respect to the solute coordinates.
Abstract: Starting from the screening in conductors, an algorithm for the accurate calculation of dielectric screening effects in solvents is presented, which leads to rather simple explicit expressions for the screening energy and its analytic gradient with respect to the solute coordinates. Thus geometry optimization of a solute within a realistic dielectric continuum model becomes practicable for the first time. The algorithm is suited for molecular mechanics as well as for any molecular orbital algorithm. The implementation into MOPAC and some example applications are reported.

7,865 citations

Journal ArticleDOI
TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Abstract: We present a method for calculating the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations. We used that method in combination with detailed density functional calculations to develop a detailed description of the free-energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias. This allowed us to identify the origin of the overpotential found for this reaction. Adsorbed oxygen and hydroxyl are found to be very stable intermediates at potentials close to equilibrium, and the calculated rate constant for the activated proton/electron transfer to adsorbed oxygen or hydroxyl can account quantitatively for the observed kinetics. On the basis of a database of calculated oxygen and hydroxyl adsorption energies, the trends in the oxygen reduction rate for a large number of different transition and noble metals can be accounted for. Alternative reaction mechanisms involving proton/electron transfer to ...

7,711 citations