scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electric vehicles charge forward

22 Nov 2004-IEEE Power & Energy Magazine (IEEE)-Vol. 2, Iss: 6, pp 24-33
TL;DR: In this paper, the status of electric vehicles/hybrid electric vehicles (EV/HEVs) worldwide and their state of the art, with emphasis on the engineering philosophy and key technologies are discussed.
Abstract: This article reviews the status of electric vehicles/hybrid electric vehicles (EV/HEVs) worldwide and their state of the art, with emphasis on the engineering philosophy and key technologies. The importance of the integration of technologies of automobile, electric motor drive, electronics, energy storage and controls, and the importance of the integration of society strength from government, industry, research institutions, electric power utilities, and transportation authorities are addressed. The challenged of EV commercialization is discussed. EV is a multidisciplinary subject involving broad and complex aspects. However, it has core technologies; chassis and body technology, propulsion technology, and energy source technology. The electric propulsion system is the heart of the EV. It consists of motor drive, transmission and controller, plus the integration with engine power train in the case of the HEV.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present state-of-the-art energy storage topologies for hybrid electric vehicles and plug-in hybrid vehicles (PHEVs) and compare battery, UC, and fuel cell technologies.
Abstract: The fuel economy and all-electric range (AER) of hybrid electric vehicles (HEVs) are highly dependent on the onboard energy-storage system (ESS) of the vehicle. Energy-storage devices charge during low power demands and discharge during high power demands, acting as catalysts to provide energy boost. Batteries are the primary energy-storage devices in ground vehicles. Increasing the AER of vehicles by 15% almost doubles the incremental cost of the ESS. This is due to the fact that the ESS of HEVs requires higher peak power while preserving high energy density. Ultracapacitors (UCs) are the options with higher power densities in comparison with batteries. A hybrid ESS composed of batteries, UCs, and/or fuel cells (FCs) could be a more appropriate option for advanced hybrid vehicular ESSs. This paper presents state-of-the-art energy-storage topologies for HEVs and plug-in HEVs (PHEVs). Battery, UC, and FC technologies are discussed and compared in this paper. In addition, various hybrid ESSs that combine two or more storage devices are addressed.

1,490 citations

Journal ArticleDOI
TL;DR: This paper reviews state-of-the-art ESSs in automotive applications and hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.
Abstract: The fuel efficiency and performance of novel vehicles with electric propulsion capability are largely limited by the performance of the energy storage system (ESS). This paper reviews state-of-the-art ESSs in automotive applications. Battery technology options are considered in detail, with emphasis on methods of battery monitoring, managing, protecting, and balancing. Furthermore, other ESS candidates such as ultracapacitors, flywheels and fuel cells are also discussed. Finally, hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.

982 citations


Cites background from "Electric vehicles charge forward"

  • ...Depending on the degree of electrification, the combination of the internal combustion engine (ICE) with an electric motor in the hybrid drive train offers a wide range of benefits, from reduced fuel consumption and emission reduction to enhanced power performance and the introduction of power-hungry hotel loads [1]–[3]....

    [...]

  • ...Electric vehicles can broadly be defined as vehicles with electric propulsion capability [3], [5]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of energy storage technologies that are currently engaged for power applications, including pumped hydro, compressed-air, battery, flywheel, capacitor, supercapacitor, superconducting magnetic and thermal systems, is presented.

521 citations

Journal ArticleDOI
TL;DR: In this article, an overview of hybrid electrical vehicles with a focus on hybrid configurations, energy management strategies and electronic control units is presented, where the advantages and disadvantages of each configuration are clearly emphasized.

482 citations


Additional excerpts

  • ...There are four key goals [31]:...

    [...]

Journal ArticleDOI
17 Aug 2017-Energies
TL;DR: The authors in this article reviewed all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments.
Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector.

372 citations

References
More filters
Journal ArticleDOI
07 Aug 2002
TL;DR: An overview of the present status of electric and hybrid vehicles worldwide and their state of the art, with emphasis on the engineering philosophy and key technologies is provided.
Abstract: In a world where environment protection and energy conservation are growing concerns, the development of electric vehicles (EV) and hybrid electric vehicles (HEV) has taken on an accelerated pace. The dream of having commercially viable EVs and HEVs is becoming a reality. EVs and HEVs are gradually available in the market. This paper will provide an overview of the present status of electric and hybrid vehicles worldwide and their state of the art, with emphasis on the engineering philosophy and key technologies. The importance of the integration of technologies of automobile, electric motor drive, electronics, energy storage, and controls and also the importance of the integration of society strength from government, industry, research institutions, electric power utilities, and transportation authorities are addressed. The challenge of EV commercialization is discussed.

1,046 citations

Book
01 Dec 2003
TL;DR: In this article, the authors give comprehensive coverage of all aspects of the hybrid vehicle design, from its power plant and energy storage systems, to supporting chassis subsystems necessary for realising hybrid modes of operation.
Abstract: The automotive industry is waking up to the fact that hybrid electric vehicles could provide an answer to the ever-increasing need for lower-polluting and more fuel-efficient forms of personal transport. This is the first book to give comprehensive coverage of all aspects of the hybrid vehicle design, from its power plant and energy storage systems, to supporting chassis subsystems necessary for realising hybrid modes of operation. Key topics covered include hybrid propulsion system architectures, propulsion system sizing, electric traction system sizing and design, loss mechanisms, system simulation and vehicle certification.

313 citations

Trending Questions (1)
What are the key components of electric vehicles?

The key components of electric vehicles are the chassis and body technology, propulsion technology, and energy source technology.