scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrical features of ferroelectric (Ba0.83Ca0.17)TiO3 ceramics with diffused phase transition under pressure

TL;DR: In this paper, the material was sintered in three steps that allowed remarkably modifying structure and electrical features important from an application point of view, and the major tetragonal phase was detected using X-ray diffraction study.
About: This article is published in Journal of Alloys and Compounds.The article was published on 2021-03-05. It has received 10 citations till now. The article focuses on the topics: Barium titanate & Ferroelectricity.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors addressed the recent advances on variously synthesized, doped and formulated XTiO3 perovskite-type oxides showing piezo-and/or photocatalytic exploitation in environmental remediation and energy conversion.

37 citations

Journal ArticleDOI
TL;DR: In this paper , the authors addressed the recent advances on variously synthesized, doped and formulated XTiO3 perovskite-type oxides showing piezo-and/or photocatalytic exploitation in environmental remediation and energy conversion.

35 citations

Journal ArticleDOI
TL;DR: A comprehensive and timely review on surface plasmonic nanostructures can be found in this article, where the authors summarized the principle of surface plasmons and its contribution in the growth, etching, and phase transition of inorganic nanocrystals.

15 citations

Journal ArticleDOI
TL;DR: Bioactive ions-doped BaTiO3 nanofibers are promising scaffolds for bone tissue engineering, thanks to their acceptable biocompatibility, appropriate piezoelectricity, and improved osteogenic activity.

12 citations

Journal ArticleDOI
Sijing Zhang1, Zhimin Li1, Maolin Zhang1, Dongyan Zhang1, Yangxi Yan1 
TL;DR: Li et al. as mentioned in this paper showed that LiF effectively lowered sintering temperature and promoted sinterding densification of PYN-PHT ceramics, and that F- doping gave rise to phase transition from the tetragonal to rhombohedral, which was beneficial to piezoelectric properties.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Abstract: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations. Revisions are based on new structural data, empirical bond strength-bond length relationships, and plots of (1) radii vs volume, (2) radii vs coordination number, and (3) radii vs oxidation state. Factors which affect radii additivity are polyhedral distortion, partial occupancy of cation sites, covalence, and metallic character. Mean Nb5+-O and Mo6+-O octahedral distances are linearly dependent on distortion. A decrease in cation occupancy increases mean Li+-O, Na+-O, and Ag+-O distances in a predictable manner. Covalence strongly shortens Fe2+-X, Co2+-X, Ni2+-X, Mn2+-X, Cu+-X, Ag+-X, and M-H- bonds as the electronegativity of X or M decreases. Smaller effects are seen for Zn2+-X, Cd2+-X, In2+-X, pb2+-X, and TI+-X. Bonds with delocalized electrons and therefore metallic character, e.g. Sm-S, V-S, and Re-O, are significantly shorter than similar bonds with localized electrons.

51,997 citations

Book
06 Oct 1977
TL;DR: In this paper, the theory of ferroelectricity in terms of soft modes and lattice dynamics is developed and modern techniques of measurement, including X-ray, optic, and neutron scattering, infra-red absorption, and magnetic resonance.
Abstract: The book develops the modern theory of ferroelectricity in terms of soft modes and lattice dynamics and also describes modern techniques of measurement, including X-ray, optic, and neutron scattering, infra-red absorption, and magnetic resonance. It includes a discussion of the related phenomena of antiferroelectricity, pyroelectricity, and ferroelasticity and seconds on domains, thin films, ceramics, and polymers, leading on to a comprehensive survey of potential and actual device capabilities for pyroelectric detection, memories, display, and modulation. It should provide an authoritative account for those engaged in research or graduate ferroelectric or pyroelectric devices.

4,931 citations

Journal ArticleDOI
04 Nov 2004-Nature
TL;DR: A lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT is reported, achieved through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly textured polycrystals.
Abstract: Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300 picocoulombs per newton (pC N(-1)), and texturing the material leads to a peak d33 of 416 pC N(-1). The textured material also exhibits temperature-independent field-induced strain characteristics.

4,689 citations

Journal ArticleDOI
TL;DR: In this paper, general guidelines for the development of lead-free piezoelectric ceramics are presented, ranging from atom to phase diagram, and the current development stage in lead free piezoceramics is then critically assessed.
Abstract: A large body of work has been reported in the last 5 years on the development of lead-free piezoceramics in the quest to replace lead–zirconate–titanate (PZT) as the main material for electromechanical devices such as actuators, sensors, and transducers. In specific but narrow application ranges the new materials appear adequate, but are not yet suited to replace PZT on a broader basis. In this paper, general guidelines for the development of lead-free piezoelectric ceramics are presented. Suitable chemical elements are selected first on the basis of cost and toxicity as well as ionic polarizability. Different crystal structures with these elements are then considered based on simple concepts, and a variety of phase diagrams are described with attractive morphotropic phase boundaries, yielding good piezoelectric properties. Finally, lessons from density functional theory are reviewed and used to adjust our understanding based on the simpler concepts. Equipped with these guidelines ranging from atom to phase diagram, the current development stage in lead-free piezoceramics is then critically assessed.

2,510 citations

Journal ArticleDOI
TL;DR: In this paper, the intrinsic nature of the dielectric and piezoelectric properties of Pb(Zr,Ti)O3 is compared with the various families of soft and hard PZTs.
Abstract: Investigations in the development of lead-free piezoelectric ceramics have recently claimed comparable properties to the lead-based ferroelectric perovskites, represented by Pb(Zr,Ti)O3, or PZT In this work, the scientific and technical impact of these materials is contrasted with the various families of “soft” and “hard” PZTs On the scientific front, the intrinsic nature of the dielectric and piezoelectric properties are presented in relation to their respective Curie temperatures (T C) and the existence of a morphotropic phase boundary (MPB) Analogous to PZT, enhanced properties are noted for MPB compositions in the (Na,Bi)TiO3-BaTiO3 and ternary system with (K,Bi)TiO3, but offer properties significantly lower The consequences of a ferroelectric to antiferroelectric transition well below T C further limits their usefulness Though comparable with respect to T C, the high levels of piezoelectricity reported in the (K,Na)NbO3 family are the result of enhanced polarizability associated with the orthorhombic-tetragonal polymorphic phase transition being compositionally shifted downward As expected, the properties are strongly temperature dependent, while degradation occurs through the thermal cycling between the two distinct ferroelectric domain states Extrinsic contributions arising from domains and domain wall mobility were determined using high field strain and polarization measurements The concept of “soft” and “hard” lead-free piezoelectrics were discussed in relation to donor and acceptor modified PZTs, respectively Technologically, the lead-free materials are discussed in relation to general applications, including sensors, actuators and ultrasound transducers

1,525 citations