scispace - formally typeset

Journal ArticleDOI

Electrical transport properties and magnetic cluster glass behavior of Nd0.7Sr0.3MnO3 nanoparticles

28 Nov 2006-Journal of Applied Physics (American Institute of Physics)-Vol. 100, Iss: 10, pp 104318

AbstractThe transport and magnetic properties have been investigated in Nd07Sr03MnO3 nanoparticles prepared by the sol-gel method The resistivity (ρ) increases with the decrease of the particle size due to the enhancement of the grain boundary effect ρ(T) shows two distinct transitions for all the samples such as metal-insulator transition and transition due to the barrier caused by the grain boundary effect The thermopower (S) is found to be negative and at high temperature S follows the adiabatic small polaron hopping theory In the metallic region the spin wave contribution is found to be dominant in the temperature dependence of the thermopower The magnetoresistance (MR) of the ultrafine particles increases with the decrease of particle size indicating substantial contribution from the grain boundaries Spin polarized intergrain tunneling effect plays an important role in the MR of a smaller size particle, whereas in the case of samples of higher dimension spin fluctuation contributes predominantly The more

More filters
Journal ArticleDOI
Abstract: Magnetic nanoparticles of La0.67Sr0.33MnO3 (LSMO) manganite were prepared by sol–gel method. Phase formation and crystal structure of the synthesized powder were examined by the X-ray diffraction (XRD) using the Rietveld analysis. The mean particle size was determined by the transmission electron microscopy (TEM). Infrared transmission spectroscopy revealed that stretching and bending modes are influenced by calcinations temperature. The temperature dependence of the ac magnetic susceptibility was measured at different frequencies and ac magnetic fields in the selected ranges of 40–1000 Hz and 80–800 A/m, respectively. The temperature dependence of ac susceptibility shows a characteristic maxima corresponding to the blocking temperature near room temperature. The frequency dependence of the blocking temperature is well described by the Vogel-Fulcher law. By fitting the experimental data with this law, the relaxation time τ0=1.7×10−12 s, characteristic temperature T0=262±3 K, anisotropy energy Ea/k=684±15 K and effective magnetic anisotropy constant keff=2.25×104 erg/cm3 have been obtained. dc Magnetization measurement versus magnetic field shows that some of LSMO nanoparticles are blocked at 293 K. The role of magnetic interparticle interactions on the magnetic behavior is also investigated.

82 citations

Journal ArticleDOI
Abstract: Magnetic properties of compacted La0.8Ca0.2MnO3 manganite nanoparticles with average particle size of 18 and 70 nm and Curie temperatures TC 231 K and TC 261 K, respectively, have been investigated. The relative volume of the ferromagnetic phase has been estimated to be 52% for ensembles of 18 nm particles and 92% for 70 nm particles. It was found that applied hydrostatic pressure enhances TC of La0.8Ca0.2MnO3 nanoparticles at a rate dTC /dP 1.8– 1.9 K / kbar, independently on the average particle size. Pronounced irreversibility of magnetization below Tirr 208 K and strong frequency dependent ac susceptibility below TC for smaller 18 nm particles have been observed. 18 nm particles have also shown aging and memory effects in zero-field-cooled ZFC and field-cooled magnetization. These features indicate the appearance of spin-glasslike state, partially reminiscent the behavior of La1�xCaxMnO3 crystals, doped below the percolation threshold xxC = 0.225. In contrast, ensembles of larger 70 nm particles have shown insignificant irreversibility of magnetization only and no frequency dependence of ac susceptibility, similarly to the behavior of La1�xCaxMnO3 crystals with xxC. The temperature of the ZFC magnetization maximum for 18 nm particles decreases with increasing magnetic field and forms a critical line with an exponent 1.89 0.56. The results suggest that superspin-glass features in ensembles of interacting 18 nm particles appear along with superferromagnetic-like features.

80 citations

Book ChapterDOI
Abstract: This chapter attempts to systematically outline some fundamentals and key experimental results concerning magnetic properties of perovskite manganites, focusing on (i) magnetocaloric properties, (ii) pressure effect on magnetic properties, and (iii) magnetism of manganite nanoparticles. Each family of manganites has unique properties that can be used as a way of tuning the optimum magnetocaloric response. The relatively easy possibility of tuning the Curie temperature of manganites is a key point in developing efficient magnetocaloric materials. The most interesting effects of applied external pressure observed for various classes of manganite systems, such as hole-doped manganites; parent, single-valent, and self-doped manganites; hexagonal manganites, near-half-doped manganites, electron-doped manganites, and manganite nanoparticles are reviewed. Some of the most relevant finite-size and surface effects on the magnetic properties of ferromagnetic and antiferromagnetic manganite nanoparticles are also discussed. New phenomena such as a suppression of charge/orbital ordering with decreasing particle size, collective states, and nonequilibrium dynamics in ensembles of antiferromagnetic manganite nanoparticles are presented.

43 citations

Journal ArticleDOI
Abstract: We have determined the values of critical exponents of two polycrystalline samples (Nd1−xYx)0.7Sr0.3MnO3 (x = 0 and 0.07) from the magnetization data versus temperature and magnetic field, M(H, T), to learn about their magnetic and magnetocaloric (MC) properties. The results reveal the samples exhibiting the crossover of first-order and second-order phase transitions, where the exponent values β = 0.271 and γ = 0.922 for x = 0, and β = 0.234–0.236 and γ = 1.044–1.063 for x = 0.07 determined by using modified Arrott plots and static-scaling hypothesis are close to those expected for the tricritical mean-field theory (β = 0.25 and γ = 1.0). Particularly, the TC of x = 0 and 0.07 can be any value in the temperature ranges of 240–255 K and 170–278 K, respectively, depending on the magnitude of applied magnetic field and determination techniques. Around the TC, studying the MC effect of the samples has revealed a large magnetic-entropy change (ΔSm) up to ∼8 J/kg K for the applied field interval ΔH = 50 kOe, corresponding to refrigerant capacity values of 200–245 J/kg. These phenomena are related to the crossover nature and the persisting of FM/anti-FM interactions even above the TC, as further confirmed by electron-spin-resonance data, Curie–Weiss law-based analyses, and an exponential parameter characteristic of magnetic order n = dLn|ΔSm|/dLnH.

42 citations

Journal ArticleDOI
Abstract: Structural, magnetic, and electrical properties of the La0.8−xSmxSr0.2MnO3 (0 ⩽ x ⩽ 0.45) manganites prepared by a solid-state reaction technique was studied systematically. It was found that with increase in the Sm content, the crystal structure transformed from rhombohedral (x 0.3 samples). The ac magnetic susceptibility measurements show that all samples undergo a transition from paramagnetic (PM) to ferromagnetic (FM) phase at the Curie temperature, TC, which decreases from 296 K down to 165 K with increase in the Sm doping level from x = 0 to x = 0.45. In addition, the glassy state exists in the x = 0.15–0.45 samples, which is stronger in higher doped compounds (x = 0.30 and x = 0.45). This behavior indicates that the substitution of Sm weakens the double exchange (DE) process. The field dependence of magnetization for the samples shows a soft FM nature with a small hysteresis loop and a low coercive field, Hc, for the doped samples. The irreversibility in the magnetization for increasing and decreasing the applied field is due to the glassy behavior observed in highly doped samples. The temperature dependence of resistivity, ρ(T), measurement indicates that by increasing the Sm doping level, the metal–insulator transition temperature decreases, and the heavily doped samples become insulators. The metallic region of the ρ(T) curve for the x = 0–0.10 samples was fitted with the model of electron–electron and electron–magnon scattering, while the insulating region was fitted with the small polaron hopping (SPH) at T > θD/2 (θD, Debye temperature) and the variable range hopping (VRH) models at T

40 citations

More filters
Journal ArticleDOI
16 Feb 1996-Science
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,373 citations

Journal ArticleDOI
Abstract: Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and $t\ensuremath{-}J$ models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in $d$-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and orbital fluctuations, mass renormalization effects, incoherence of charge dynamics, and phase transitions under control of key parameters such as band filling, bandwidth, and dimensionality. These parameters are experimentally varied by doping, pressure, chemical composition, and magnetic fields. Much of the observed behavior can be described by the current theory. Open questions and future problems are also extracted from comparison between experimental results and theoretical achievements.

5,274 citations

Journal ArticleDOI
TL;DR: It is proposed that in addition to double-exchange physics a strong electron-phonon interaction arising from the Jahn-Teller splitting of the outer Mn $d$ level plays a crucial role.
Abstract: The ${\mathrm{La}}_{1\ensuremath{-}x}{\mathrm{Sr}}_{x}{\mathrm{MnO}}_{3}$ system with $02\ensuremath{\lesssim}x\ensuremath{\lesssim}04$ has traditionally been modeled with a ``double-exchange'' Hamiltonian in which it is assumed that the only relevant physics is the tendency of carrier hopping to line up neighboring spins We present a solution of the double-exchange model, show it is incompatible with many aspects of the data, and propose that in addition to double-exchange physics a strong electron-phonon interaction arising from the Jahn-Teller splitting of the outer Mn $d$ level plays a crucial role

2,272 citations

Journal ArticleDOI
Abstract: The one-dimensional molecular-crystal model of polaron motion, described in the preceding paper, is here analyzed for the case in which the electronic-overlap term of the total Hamiltonian is a small perturbation. In zeroth order—i.e., in the absence of this term—the electron is localized at a given site, p. The vibrational state of the system is specified by a set of quantum-numbers, Nk, giving the degree of excitation of each vibration-mode; the latter differ from the conventional modes in that in each of them, the equilibrium displacement, about which the system oscillates, depends upon the location of the electron. The presence of a nonvanishing electronic-overlap term gives rise to transitions in which the electron jumps to a neighboring site (p→p±1), and in which either all of the Nk remain unaltered (“diagonal” transitions) or in which some of them change by ±1 (“nondiagonal” transitions). The two types of transitions play fundamentally different roles. At sufficiently low temperatures, the diagonal transitions are dominant. They give rise to the formation of Bloch-type bands whose widths (see Eq. 37) are each given by the product of the electronic-overlap integral, and a vibrational overlap-integral, the latter being an exponentially falling function of the Nk (and, hence, of temperature). In this low-temperature domain, the role of the non- diagonal transitions is essentially one of scattering. In the absence of other scattering mechanisms, such as impurity scattering, they determine the lifetimes of the polaron-band states and, hence, the mean free path for typical transport quantities, such as electron diffusivity. With rising temperature, the probability of the off-diagonal transitions goes up exponentially. This feature, together with the above-mentioned drop in bandwidth, results, e.g., in an exponentially diminishing diffusivity. Eventually, a temperature, Tt∼ 1 2 the Debye Θ, is reached at which the energy uncertainty, ℏ/τ, associated with the finite lifetime of the states, is equal to the bandwidth. At this point, the Bloch states lose their individual characteristics (in particular, those which depend upon electronic wave number); the bands may then be considered as “washed out.” For temperatures >Tt, electron motion is predominantly a diffusion process. The elementary steps of this process consist of the random-jumps between neighboring sites associated with the nondiagonal transitions. In conformance with this picture, the electron diffusivity is, apart from a numerical factor, the product of the square of the lattice distance and the total non-diagonal transition probability, and is therefore an exponentially rising function of temperature. The limit, Jmax, of the magnitude of the electronic overlap term, beyond which the perturbation treatment of the present paper becomes inapplicable, is investigated. For representative values of the parameters entering into the theory, Jmax∼0.12 ev and 0.035 ev for the extreme cases of (a) width of the ground-state polaron-band and (b) high-temperature site-jump probabilities (these numbers correspond to electronic bandwidths of 0.24 ev and 0.07 ev, respectively). For electronic bandwidths in excess of these limits, a treatment based on the adiabatic approach is required; preliminary results of such a treatment are given for the above two cases.

2,112 citations

Journal ArticleDOI
Abstract: The fundamental physical properties of doped ${\mathrm{LaMnO}}_{3},$ generically termed ``manganites,'' and much of the underlying physics, were known more than 40 years ago. This article first reviews progress made at that time, the concept of double exchange in particular, and points out the missing elements that have led to a massive resurgence of interest in these and related materials. More recent research is then described, treating first the ground states that emerge as divalent atoms are substituted for trivalent La. A wide range of ground states appear, including ferromagnetic metals, orbital- and charge-ordered antiferromagnets, and more complex stripe and spin-glass states. Because of the interest in so-called colossal magnetoresistance that occurs in the ferromagnetic/metallic composition range, a section is devoted to reviewing the atypical properties of that phase. Next the high-temperature phase is examined, in particular, evidence for the formation of self-trapped small polarons and the importance of Jahn-Teller coupling in this process. The transitions between the high-temperature polaronic phase and the ferromagnetic and charge-ordered states are treated in a fourth section. In each section, the authors stress the competition among charge, spin, and lattice coupling and review the current state of theoretical understanding. They conclude with some comments on the impact that research on these materials has on our understanding of doped oxides and other strongly correlated electronic materials.

1,926 citations