scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electro-mechanical properties of the piezoelectric polymer PVDF

01 Apr 1999-Ferroelectrics (Taylor & Francis Group)-Vol. 226, Iss: 1, pp 169-181
TL;DR: In this article, a consistent experimental program has been developed to investigate the mechanical and electrical properties of polyvinylidene fluoride (PVDF), and the results of the study indicate that this piezoelectric polymer can be characterized as an orthotropic, thermorheologically simple material with constant PDE strain coefficients over the experimental range of stresses, frequencies and temperatures.
Abstract: A consistent experimental program has been developed to investigate the mechanical and electrical properties of polyvinylidene fluoride (PVDF). The results of the study indicate that this piezoelectric polymer can be characterized as an orthotropic, thermorheologically simple material with constant piezoelectric strain coefficients over the experimental range of stresses, frequencies and temperatures. The mechanical properties of PVDF are time-dependent and, under certain loading and temperature conditions, can be treated using the principles of linear hereditary viscoelasticity.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a figure of merit analysis for key devices is presented and used to contrast lead-containing and lead-free piezoceramics for demanding applications with high reliability, displacements and frequency as well as a wide temperature range.
Abstract: After twenty years of partly quiet and ten years of partly enthusiastic research into lead-free piezoceramics there are now clear prospects for transfer into applications in some areas. This mimics prior research into eliminating lead from other technologies that resulted in restricted lead use in batteries and dwindling use in other applications. A figure of merit analysis for key devices is presented and used to contrast lead-containing and lead-free piezoceramics. A number of existing applications emerge, where the usage of lead-free piezoceramics may be envisaged in the near future. A sufficient transition period to ensure reliability, however, is required. The use of lead-free piezoceramics for demanding applications with high reliability, displacements and frequency as well as a wide temperature range appears to remain in the distant future. New devices are outlined, where the figure of merit suggests skipping lead-containing piezoceramics altogether. Suggestions for the next pertinent research requirements are provided.

966 citations

Journal ArticleDOI
TL;DR: Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium, enabling a host of exciting avenues in fundamental research and novel applications.
Abstract: The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

455 citations

Journal ArticleDOI
TL;DR: In this article, the structural changes that occur in semicrystalline poly(vinylidene fluoride) during a mechanical deformation process were studied by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC).
Abstract: Films of semicrystalline poly(vinylidene fluoride) (PVDF) in the β-phase were studied by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The main goal of this study was to improve the understanding of the structural changes that occur in β-PVDF during a mechanical deformation process. FTIR spectroscopy was used to examine the structural variations as a function of strain. DSC data allowed measurement of the melting temperatures and enthalpies of the material before and after deformation, providing information about the changes in the crystalline fraction. After the molecular vibrations were assigned to the corresponding vibrational modes, we investigated the energy and intensity variations of these vibrations at different deformations. A reorientation of the chains from perpendicular to parallel to the stress direction was observed to occur in the plastic region. During the deformation, a decrease in the degree of crystallinity of the material was observed, but ...

375 citations


Cites background from "Electro-mechanical properties of th..."

  • ...An applied electric field up to 100 kV/mm, at temperatures around 100°C, causes the net polarization of PVDF, which is maintained once the material is cooled to room temperature [2]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the important aspects and recent advances in the research area of ferroelectric polymers, covering from understanding of material fundamentals, through synthesis and processing techniques, to applications in energy conversion and storage.
Abstract: The discovery of ferroelectric phenomenon in polymers in early 1970s has aroused tremendous research interests in these soft materials with intriguing physical properties, and led to a broad range of applications. Since then the understanding of physical origin of ferroelectricity in these macromolecules has been fast deepened by virtue of the rapid development of ferroelectric polymer science, which in turn has enabled better design of ferroelectric polymers with improved performance. Over the last two decades, as boosted by the increasing demand for advanced energy technologies, great progress has been made in understanding and developing new ferroelectric polymers toward energy-related applications. This trend article summarizes the important aspects and recent advances in the research area of ferroelectric polymers, covering from understanding of material fundamentals, through synthesis and processing techniques, to applications in energy conversion and storage.

187 citations

Journal ArticleDOI
TL;DR: In this paper, a double-electrode approach has been used to minimize the electrostatic effect in fiber-based actuators, and an average piezoelectric coefficient d33 of −57.6 pm/V has been characterized from fabricated fibers and this value is about twice larger than the value reported in PVDF thin-films.
Abstract: Piezoelectric actuation of doubly clamped, electrospun poly (vinylidene fluoride) (PVDF) fibers fabricated by a direct-write process has been demonstrated. Near-field electrospinning (NFES) has been utilized to fabricate PVDF fibers with good piezoelectric properties by means of the in situ electrical poling and mechanical stretching process. Experimentally, PVDF fibers have responded to both piezoelectric and electrostatic effects and a double-electrode approach has been used to minimize the electrostatic effect. An average piezoelectric coefficient d33 of −57.6 pm/V has been characterized from fabricated fibers and this value is about twice larger than the value reported in PVDF thin-films. Various complex patterns of PVDF fibers have been deposited using NFES, enabling possible array formats for fiber-based actuators with possible applications including artificial muscles and switches.

175 citations

References
More filters
Book
01 Jan 1961
TL;DR: In this article, the authors describe the nature of Viscoelastic behavior of polymeric systems and approximate relations among the linear Viscoels and approximate interrelations among the Viscelastic Functions.
Abstract: The Nature of Viscoelastic Behavior. Illustrations of Viscoelastic Behavior of Polymeric Systems. Exact Interrelations among the Viscoelastic Functions. Approximate Interrelations among the Linear Viscoelastic Functions. Experimental Methods for Viscoelastic Liquids. Experimental Methods for Soft Viscoelastic Solids and Liquids of High Viscosity. Experimental Methods for Hard Viscoelastic Solids. Experimental Methods for Bulk Measurements. Dilute Solutions: Molecular Theory and Comparisons with Experiments. Molecular Theory for Undiluted Amorphous Polymers and Concentrated Solutions Networks and Entanglements. Dependence of Viscoelastic Behavior on Temperature and Pressure. The Transition Zone from Rubberlike to Glasslike Behavior. The Plateau and Terminal Zones in Uncross-Linked Polymers. Cross-Linked Polymers and Composite Systems. The Glassy State. Crystalline Polymers. Concentrated Solutions, Plasticized Polymers, and Gels. Viscoelastic Behavior in Bulk (Volume) Deformation. Applications to Practical Problems. Appendices. Author & Subject Indexes.

12,676 citations

Book
14 Dec 1993
TL;DR: In this article, the authors discuss various mechanical properties of fiber-filled composites, such as elastic moduli, creep and stress relaxation, and other mechanical properties such as stress-strain behavior and strength.
Abstract: Mechanical Tests and Polymer Transitions * Elastic Moduli * Creep and Stress Relaxation * Dynamical Mechanical Properties * Stress-Strain Behaviour and Strength * Other mechanical Properties * Particulate-Filled Polymers * Fiber- Filled Composites and Other Composites.

3,166 citations

Book
01 Jan 1971

1,544 citations

Book
01 Jan 1990

1,325 citations