scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials

23 Jul 2012-ACS Catalysis (American Chemical Society)-Vol. 2, Iss: 8, pp 1765-1772
TL;DR: In this article, the intrinsic catalytic activity and durability of carbon supported Ru, Ir, and Pt nanoparticles and corresponding bulk materials for the electrocatalytic oxygen evolution reaction (OER) were examined by surface-sensitive cyclic voltammetry.
Abstract: A comparative investigation was performed to examine the intrinsic catalytic activity and durability of carbon supported Ru, Ir, and Pt nanoparticles and corresponding bulk materials for the electrocatalytic oxygen evolution reaction (OER). The electrochemical surface characteristics of nanoparticles and bulk materials were studied by surface-sensitive cyclic voltammetry. Although basically similar voltammetric features were observed for nanoparticles and bulk materials of each metal, some differences were uncovered highlighting the changes in oxidation chemistry. On the basis of the electrochemical results, we demonstrated that Ru nanoparticles show lower passivation potentials compared to bulk Ru material. Ir nanoparticles completely lost their voltammetric metallic features during the voltage cycling, in contrast to the corresponding bulk material. Finally, Pt nanoparticles show an increased oxophilic nature compared to bulk Pt. With regard to the OER performance, the most pronounced effects of nanosca...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Abstract: There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.

3,976 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Abstract: Increasing demand for finding eco-friendly and everlasting energy sources is now totally depending on fuel cell technology. Though it is an eco-friendly way of producing energy for the urgent requirements, it needs to be improved to make it cheaper and more eco-friendly. Although there are several types of fuel cells, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct. However, supplying fuels in the purest form (at least the H2) is essential to ensure higher life cycles and less decay in cell efficiency. The current large-scale H2 production is largely dependent on steam reforming of fossil fuels, which generates CO2 along with H2 and the source of which is going to be depleted. As an alternate, electrolysis of water has been given greater attention than the steam reforming. The reasons are as follows: the very high purity of the H2 produced, the abundant source, no need for high-temperature, high-pressure reactors, and so on. In earlier days,...

1,757 citations

Journal ArticleDOI
TL;DR: A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the Investigation of catalyst structure and composition.
Abstract: Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of-preferably abundant-nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.

1,153 citations

Journal ArticleDOI
TL;DR: In this paper, a review article summarizes the very recent efforts in the field of OER electrocatalysis along with the faced challenges and solutions to these challenges also outline with appropriate examples of scientific literatures.

1,121 citations

Journal ArticleDOI
TL;DR: The reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance.
Abstract: Zinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance. Additionally, a section dedicated to battery-testing techniques and corresponding recommendations for best practices are included. Finally, a general perspective on the current limitations, recent application-targeted developments, and recommended future research directions to prolong the lifespan of electrically rechargeable zinc-air batteries is provided.

1,071 citations

References
More filters
Book
01 Jan 2001

19,319 citations

Book
01 Jan 1956
TL;DR: In this article, the authors present a chemical analysis of X-ray diffraction by Xray Spectrometry and phase-diagram Determination of single crystal structures and phase diagrams.
Abstract: 1. Properties of X-rays. 2. Geometry of Crystals. 3. Diffraction I: Directions of Diffracted Beams. 4. Diffraction II: Intensities of Diffracted Beams. 5. Diffraction III: Non-Ideal Samples. 6. Laure Photographs. 7. Powder Photographs. 8. Diffractometer and Spectrometer. 9. Orientation and Quality of Single Crystals. 10. Structure of Polycrystalline Aggregates. 11. Determination of Crystal Structure. 12. Precise Parameter Measurements. 13. Phase-Diagram Determination. 14. Order-Disorder Transformation. 15. Chemical Analysis of X-ray Diffraction. 16. Chemical Analysis by X-ray Spectrometry. 17. Measurements of Residual Stress. 18. Polymers. 19. Small Angle Scatters. 20. Transmission Electron Microscope.

17,428 citations

Journal ArticleDOI
TL;DR: In this article, the Scherrer constants of simple regular shapes have been determined for all low-angle reflections (h2 + k2 + l2 ≤ 100) for four measures of breadth.
Abstract: Existing knowledge about Scherrer constants is reviewed and a summary is given of the interpretation of the broadening arising from small crystallites. Early work involving the half-width as a measure of breadth has been completed and Scherrer constants of simple regular shapes have been determined for all low-angle reflections (h2 + k2 + l2 ≤ 100) for four measures of breadth. The systematic variation of Scherrer constant with hkl is discussed and a convenient representation in the form of contour maps is applied to simple shapes. The relation between the `apparent' crystallite size, as determined by X-ray methods, and the `true' size is considered for crystallites having the same shape. If they are of the same size, then the normal Scherrer constant applies, but if there is a distribution of sizes, a modified Scherrer constant must be used.

3,018 citations

Journal ArticleDOI
TL;DR: In this article, a large database of HO* and HOO* adsorption energies on oxide surfaces was used to analyze the reaction free energy diagrams of all the oxides in a general way.
Abstract: Trends in electrocatalytic activity of the oxygen evolution reaction (OER) are investigated on the basis of a large database of HO* and HOO* adsorption energies on oxide surfaces. The theoretical overpotential was calculated by applying standard density functional theory in combination with the computational standard hydrogen electrode (SHE) model. We showed that by the discovery of a universal scaling relation between the adsorption energies of HOO* vs HO*, it is possible to analyze the reaction free energy diagrams of all the oxides in a general way. This gave rise to an activity volcano that was the same for a wide variety of oxide catalyst materials and a universal descriptor for the oxygen evolution activity, which suggests a fundamental limitation on the maximum oxygen evolution activity of planar oxide catalysts.

2,923 citations

Journal ArticleDOI
TL;DR: In this paper, density functional theory (DFT) calculations are performed to analyze the electrochemical water-splitting process producing molecular oxygen (O 2 ) and hydrogen (H 2 ).

2,063 citations