scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrocatalytic water oxidation with a copper(II) polypeptide complex

01 Feb 2013-Journal of the American Chemical Society (American Chemical Society)-Vol. 135, Iss: 6, pp 2048-2051
TL;DR: A self-assembly-formed triglycylcylglycine macrocyclic ligand (TGG(4-)) complex of Cu(II) efficiently catalyzes water oxidation in a phosphate buffer at pH 11 at room temperature by a well-defined mechanism.
Abstract: A self-assembly-formed triglycylglycine macrocyclic ligand (TGG(4-)) complex of Cu(II), [(TGG(4-))Cu(II)-OH(2)](2-), efficiently catalyzes water oxidation in a phosphate buffer at pH 11 at room temperature by a well-defined mechanism. In the mechanism, initial oxidation to Cu(III) is followed by further oxidation to a formal "Cu(IV)" with formation of a peroxide intermediate, which undergoes further oxidation to release oxygen and close the catalytic cycle. The catalyst exhibits high stability and activity toward water oxidation under these conditions with a high turnover frequency of 33 s(-1).
Citations
More filters
Journal ArticleDOI
TL;DR: This tutorial review covers the fundamentals of light capturing and conversion, water oxidation catalysis, proton and CO2 reduction catalysis and the combination of these for the construction of complete cells for the generation of solar fuels.
Abstract: The replacement of fossil fuels by a clean and renewable energy source is one of the most urgent and challenging issues our society is facing today, which is why intense research has been devoted to this topic recently. Nature has been using sunlight as the primary energy input to oxidise water and generate carbohydrates (solar fuel) for over a billion years. Inspired, but not constrained, by nature, artificial systems can be designed to capture light and oxidise water and reduce protons or other organic compounds to generate useful chemical fuels. This tutorial review covers the primary topics that need to be understood and mastered in order to come up with practical solutions for the generation of solar fuels. These topics are: the fundamentals of light capturing and conversion, water oxidation catalysis, proton and CO2 reduction catalysis and the combination of all of these for the construction of complete cells for the generation of solar fuels.

712 citations

Journal ArticleDOI
Jin-Xian Feng1, Sheng-Hua Ye1, Han Xu1, Yexiang Tong1, Gao-Ren Li1 
TL;DR: This study provides a new route to the design and fabrication of electrocatalysts with high electroactivity and durability for oxygen evolution with FeOOH/CeO2 heterolayered nanotubes supported on Ni foam.
Abstract: FeOOH/CeO2 heterolayered nanotubes supported on Ni foam as efficient oxygen evolution electrocatalysts are reported. The hybrid structure can obviously promote the catalytic performance for the oxygen evolution reaction, such as low onset potential, high electroactivity, and excellent long-term durability. This study provides a new route to the design and fabrication of electrocatalysts with high electroactivity and durability for oxygen evolution.

518 citations

Journal ArticleDOI
TL;DR: In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques, and an analysis of the advantages, challenges, and stability of molecular catalysts is provided.
Abstract: Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.

512 citations

References
More filters
Journal ArticleDOI
22 Aug 2008-Science
TL;DR: A catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions is reported that not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.
Abstract: The utilization of solar energy on a large scale requires its storage. In natural photosynthesis, energy from sunlight is used to rearrange the bonds of water to oxygen and hydrogen equivalents. The realization of artificial systems that perform "water splitting" requires catalysts that produce oxygen from water without the need for excessive driving potentials. Here we report such a catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions. A variety of analytical techniques indicates the presence of phosphate in an approximate 1:2 ratio with cobalt in this material. The pH dependence of the catalytic activity also implicates the hydrogen phosphate ion as the proton acceptor in the oxygen-producing reaction. This catalyst not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.

3,695 citations

Journal ArticleDOI
TL;DR: It is shown that it is possible to close that 'two orders of magnitude' gap in the efficiency of the water oxidation with a rationally designed molecular catalyst [Ru(bda)(isoq)(2)] (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; isoq = isoquinoline).
Abstract: Across chemical disciplines, an interest in developing artificial water splitting to O(2) and H(2), driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the desired level by approximately two orders of magnitude. Here, we show that it is possible to close that 'two orders of magnitude' gap with a rationally designed molecular catalyst [Ru(bda)(isoq)(2)] (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; isoq = isoquinoline). This speeds up the water oxidation to an unprecedentedly high reaction rate with a turnover frequency of >300 s(-1). This value is, for the first time, moderately comparable with the reaction rate of 100-400 s(-1) of the oxygen-evolving complex of photosystem II in vivo.

1,051 citations

Journal ArticleDOI
TL;DR: The underlying physical principles--light absorption, energy transfer, radiative and nonradiative excited-state decay, electron transfer, proton-coupled electronTransfer, and catalysis--are outlined with an eye toward their roles in molecular assemblies for energy conversion.
Abstract: The goal of artificial photosynthesis is to use the energy of the sun to make high-energy chemicals for energy production. One approach, described here, is to use light absorption and excited-state electron transfer to create oxidative and reductive equivalents for driving relevant fuel-forming half-reactions such as the oxidation of water to O2 and its reduction to H2. In this "integrated modular assembly" approach, separate components for light absorption, energy transfer, and long-range electron transfer by use of free-energy gradients are integrated with oxidative and reductive catalysts into single molecular assemblies or on separate electrodes in photelectrochemical cells. Derivatized porphyrins and metalloporphyrins and metal polypyridyl complexes have been most commonly used in these assemblies, with the latter the focus of the current account. The underlying physical principles--light absorption, energy transfer, radiative and nonradiative excited-state decay, electron transfer, proton-coupled electron transfer, and catalysis--are outlined with an eye toward their roles in molecular assemblies for energy conversion. Synthetic approaches based on sequential covalent bond formation, derivatization of preformed polymers, and stepwise polypeptide synthesis have been used to prepare molecular assemblies. A higher level hierarchial "assembly of assemblies" strategy is required for a working device, and progress has been made for metal polypyridyl complex assemblies based on sol-gels, electropolymerized thin films, and chemical adsorption to thin films of metal oxide nanoparticles.

916 citations

Journal ArticleDOI
Edward I. Solomon1, Peng Chen1, Markus Metz1, Sang-Kyu Lee1, Amy E. Palmer1 
TL;DR: The spectroscopic and quantum-mechanical study of these oxygen intermediates has defined geometric- and electronic-structure/function correlations, and developed detailed reaction coordinates for the reversible binding of O(2), hydroxylation, and H-atom abstraction from different substrates, and the reductive cleavage of the O-O bond in the formation water.
Abstract: Copper active sites play a major role in biological and abiological dioxygen activation. Oxygen intermediates have been studied in detail for the proteins and enzymes involved in reversible O(2) binding (hemocyanin), activation (tyrosinase), and four-electron reduction to water (multicopper oxidases). These oxygen intermediates exhibit unique spectroscopic features indicative of new geometric and electronic structures involved in oxygen activation. The spectroscopic and quantum-mechanical study of these intermediates has defined geometric- and electronic-structure/function correlations, and developed detailed reaction coordinates for the reversible binding of O(2), hydroxylation, and H-atom abstraction from different substrates, and the reductive cleavage of the O-O bond in the formation water.

743 citations

Journal ArticleDOI
TL;DR: A general reactivity toward water oxidation in a class of molecules whose properties can be "tuned" systematically by synthetic variations based on mechanistic insight is described.
Abstract: Mastering the production of solar fuels by artificial photosynthesis would be a considerable feat, either by water splitting into hydrogen and oxygen or reduction of CO2 to methanol or hydrocarbons: 2H2O + 4hν → O2 + 2H2; 2H2O + CO2 + 8hν → 2O2 + CH4. It is notable that water oxidation to dioxygen is a key half-reaction in both. In principle, these solar fuel reactions can be coupled to light absorption in molecular assemblies, nanostructured arrays, or photoelectrochemical cells (PECs) by a modular approach. The modular approach uses light absorption, electron transfer in excited states, directed long range electron transfer and proton transfer, both driven by free energy gradients, combined with proton coupled electron transfer (PCET) and single electron activation of multielectron catalysis. Until recently, a lack of molecular catalysts, especially for water oxidation, has limited progress in this area. Analysis of water oxidation mechanism for the “blue” Ru dimer cis,cis-[(bpy)2(H2O)RuIIIORuIII(OH2)(b...

739 citations