scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS

TL;DR: The proposed immunoelectrode was validated with conventional ELISA for the detection of CEA in serum samples of cancer patients and resulted in improved electrochemical performance and signal stability.
Abstract: We report results of the studies relating to the fabrication of a label-free, flexible, light weight and disposable conducting paper based immunosensing platform comprising of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and nanostructured iron oxide (nFe(2)O(3)@PEDOT:PSS) nanocomposite for detection of carcinoembryonic antigen (CEA), a cancer biomarker. The effect of various solvents such as sorbitol, ethanol, propanol, n-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO) on the electrical conductivity of Whatman filter paper (WP) modified with nFe(2)O(3)@PEDOT:PSS/WP was investigated. The electrical conductivity of the PEDOT:PSS/WP electrode was found to be enhanced by two orders of magnitude (from 6.8 x 10(-4) to 1.92 x 10(-2) Scm(-1)) after its treatment with DMSO. Further, nFe(2)O(3) doped PEDOT:PSS/WP electrode exhibited the electrical conductivity as 2.4 x 10(-2) Scm(-1). Besides this, the incorporation of iron oxide nanoparticles (nFe(2)O(3)) into PEDOT:PSS/ WP resulted in improved electrochemical performance and signal stability. This nFe(2)O(3)@ PEDOT:PSS/WP based platform was used for immobilization of the anti-carcinoembronic antigen (anti-CEA) protein for quantitative estimation of cancer biomarker (CEA). The results of electrochemical response studies revealed that this conducting paper based immunoelectrode had a sensitivity of 10.2 mu Ang(-1) mLcm(-2) in the physiological range (4-25 ngmL(-1)) and shelf life of 34 days. Further, the proposed immunoelectrode was validated with conventional ELISA for the detection of CEA in serum samples of cancer patients. (C) 2019 Elsevier B.V. All rights reserved.
Citations
More filters
Journal ArticleDOI
TL;DR: The progress in functionalization of cellulose papers with antibodies, nucleic acids and nanomaterials in PBBs and μPADs, is discussed and critically evaluated.
Abstract: A remarkable progress in the development of portable paper-based biosensors (PBBs) and microfluidic paper-based analytical devices (μPADs) has recently been achieved. In these devices, a paper formed of microfibers of cellulose, a carbohydrate biopolymer, offers both an ample space in its micropores for analytical reagents storage and a capillary force to drive liquid samples to a dedicated reaction zone for instantaneous detection of the desired analytes. Owing to the low cost and ultra-high sensitivity, these novel devices have become a promising alternative to traditional advanced analytical instruments and offer great potential for applications in medical emergencies, health diagnostics at points-of-care, and broad early-cancer screening. In this review, we focus particularly on recent important achievements in utilization of cellulose and its modifications in portable sensing devices for biomedical applications. The progress in functionalization of cellulose papers with antibodies, nucleic acids and nanomaterials in PBBs and μPADs, is discussed and critically evaluated.

131 citations

Journal ArticleDOI
TL;DR: An ultrasensitive SPR biosensor for detecting carcinoembryonic antigen (CEA) in real serum samples is described, providing a promising method to evaluate CEA in human serum for early diagnosis and monitoring of cancer.
Abstract: Surface plasmon resonance (SPR) has become a leading technique for in situ bioaffinity assay of diverse targets without need of fluorescent or enzymatic labeling. Nanomaterials-enhanced SPR sensors have developed rapidly and widened the application scope of SPR sensing technology. In this report we describe an ultrasensitive SPR biosensor for detecting carcinoembryonic antigen (CEA). Our SPR biosensor utilizes a Ti3C2-MXene-based sensing platform and multi-walled carbon nanotube (MWCNTs)-polydopamine (PDA)-Ag nanoparticle (AgNPs) signal enhancer. Ti3C2-MXene, a new class of two-dimensional (2D) transition metal carbides, offers a large hydrophilic-biocompatible surface ideal for SPR biosensing. Ti3C2-MXene/AuNPs composites after synthesis are then decorated with staphylococcal protein A (SPA) to orient and immobilize monoclonal anti-CEA antibody (Ab1) through its Fc region. By introducing MWCNTs-PDA-AgNPs-polyclonal anti-CEA antibody (MWPAg-Ab2) conjugate combined with a sandwich format, the present method provides a dynamic range for CEA determination of 2×10-16 to 2×10-8 M and a detection limit of 0.07 fM. This biosensing approach demonstrates good reproducibility and high specificity for CEA in real serum samples providing a promising method to evaluate CEA in human serum for early diagnosis and monitoring of cancer.

124 citations

Journal ArticleDOI
TL;DR: The present review provides a state-of-the-art conspectus on the industrial and biomedical applications of antimicrobial gum-based biocomposites.
Abstract: Gum polysaccharides are derived from renewable sources. They are readily available, inexpensive, non-hazardous and eco-friendly. Depending upon the source, gums may be categorized as microbial gums, plant exudate gums or seed gums. Naturally occurring gum carbohydrates find multiple applications in the biomedical arena, compared with synthetic compounds, because of their unique structures and functionalities. Gums and their biocomposites are preferred for sustained drug delivery because they are safe and edible as well as more susceptible to biodegradation. The present review provides a state-of-the-art conspectus on the industrial and biomedical applications of antimicrobial gum-based biocomposites. Different kinds of gums polysaccharides will first be addressed based on their sources. Metal-, carbon- and organic-based nanostructures that are used in gum nanocomposites will then be reviewed with respect to their industrial and biomedical applications, to provide a backdrop for future research.

83 citations

Journal ArticleDOI
TL;DR: In this article, the potential applications of electrochemical conducting polymer (CP)-based electrochemical biosensors in COVID-19 detection based on their applications for the detection of various biomarkers such as DNA/RNA, proteins, whole viruses, and antigens.
Abstract: Rapid, accurate, portable, and large-scale diagnostic technologies for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) are crucial for controlling the coronavirus disease (COVID-19). The current standard technologies, i.e., reverse-transcription polymerase chain reaction, serological assays, and computed tomography (CT) exhibit practical limitations and challenges in case of massive and rapid testing. Biosensors, particularly electrochemical conducting polymer (CP)-based biosensors, are considered as potential alternatives owing to their large advantages such as high selectivity and sensitivity, rapid detection, low cost, simplicity, flexibility, long self-life, and ease of use. Therefore, CP-based biosensors can serve as multisensors, mobile biosensors, and wearable biosensors, facilitating the development of point-of-care (POC) systems and home-use biosensors for COVID-19 detection. However, the application of these biosensors for COVID-19 entails several challenges related to their degradation, low crystallinity, charge transport properties, and weak interaction with biomarkers. To overcome these problems, this study provides scientific evidence for the potential applications of CP-based electrochemical biosensors in COVID-19 detection based on their applications for the detection of various biomarkers such as DNA/RNA, proteins, whole viruses, and antigens. We then propose promising strategies for the development of CP-based electrochemical biosensors for COVID-19 detection.

51 citations

Journal ArticleDOI
TL;DR: The application of microfluidic paper-based assays to the detection of many common human diseases using 3 non-invasive samples sources such as saliva, tears and sweat is described.
Abstract: Microfluidic paper-based analysis devices (μPADs) have undergone tremendous development in recent years and now provide a feasible low-cost alternative to traditional laboratory tests for the diagnosis of many common diseases and disorders. As such, they are of great interest and importance in developing regions of the world with a lack of medical resources and associated infrastructures. This review examines the advances made in microfluidic paper-based diagnostic technology in the past five years and describes the application of microfluidic paper-based assays to the detection of many common human diseases using 3 non-invasive samples sources such as saliva, tears and sweat. The review commences by introducing the basic principles of fluid transport in microfluidic paper-based devices. The structures and actuation systems used in common paper-based devices are then introduced and explained. A systematic review of recent proposals for the application of paper-based devices to the diagnosis of common human diseases is then presented. The review concludes with a brief discussion of the challenges facing the microfluidics paper-based diagnosis field in the coming years and the emerging opportunities for future research.

49 citations

References
More filters
Journal ArticleDOI
TL;DR: The results for 20 world regions are presented, summarizing the global patterns for the eight most common cancers, and striking differences in the patterns of cancer from region to region are observed.
Abstract: Estimates of the worldwide incidence and mortality from 27 cancers in 2008 have been prepared for 182 countries as part of the GLOBOCAN series published by the International Agency for Research on Cancer. In this article, we present the results for 20 world regions, summarizing the global patterns for the eight most common cancers. Overall, an estimated 12.7 million new cancer cases and 7.6 million cancer deaths occur in 2008, with 56% of new cancer cases and 63% of the cancer deaths occurring in the less developed regions of the world. The most commonly diagnosed cancers worldwide are lung (1.61 million, 12.7% of the total), breast (1.38 million, 10.9%) and colorectal cancers (1.23 million, 9.7%). The most common causes of cancer death are lung cancer (1.38 million, 18.2% of the total), stomach cancer (738,000 deaths, 9.7%) and liver cancer (696,000 deaths, 9.2%). Cancer is neither rare anywhere in the world, nor mainly confined to high-resource countries. Striking differences in the patterns of cancer from region to region are observed.

21,040 citations

Journal ArticleDOI
TL;DR: This communication describes a simple method for patterning paper to create well-defined, millimeter-sized channels, comprising hydrophilic paper bounded by hydrophobic polymer, that will become the basis for low-cost, portable, and technically simple multiplexed bioassays.
Abstract: This communication describes a simple method for patterning paper to create well-defined, millimeter-sized channels, comprising hydrophilic paper bounded by hydrophobic polymer. We believe that this type of patterned paper will become the basis for low-cost, portable, and technically simple multiplexed bioassays. We demonstrate this capability by the simultaneous detection of glucose and protein in 5 μL of urine. The assay system is small, disposable, easy to use (and carry), and requires no external equipment, reagents, or power sources. We believe this kind of system is attractive for uses in less-industrialized countries, in the field, or as an inexpensive alternative to more advanced technologies already used in clinical settings.[1-4] The analysis of biological fluids is necessary for monitoring the health of populations,[2] but these measurements are difficult to implement in remote regions such as those found in less-industrialized countries, in emergency situations, or in home health-care settings.[3] Conventional laboratory instruments provide quantitative measurements of biological samples, but they are unsuitable for these situations since they are large, expensive, and require trained personnel and considerable volumes of biological samples.[2] Other bioassay platforms provide alternatives to more expensive instruments,[5-7] but the need remains for a platform that uses small volumes of sample and that is sufficiently inexpensive to be used widely for measuring samples from large populations. We believe that paper may serve as a particularly convenient platform for running bioassays in the remote situations locations. As a prototype for a mthod we believe to be particularly promosing, we patterned photoresist onto chromatography paper to form defined areas of hydrophilic paper separated by hydrophobic lines or “walls”; these patterns provide spatial control of biological fluids and enable fluid transport, without pumping, due to capillary action in the millimeter-sized channels produced. This method for patterning paper makes it possible to run multiple diagnostic assays on one strip of paper, while still using only small volumes of a single sample. In a fully developed technology, patterned photoresist would be replaced by an appropriate printing technology, but patterning paper with photoresist is: i) convenient for prototyping these devices, and ii) a useful new micropatterning technology in its own right. We patterned chromatography paper with SU-8 2010 photoresist as shown in Figure 1a and as described below: we soaked a 7.5-cm diameter piece of chromatography paper in 2 mL of SU-8 2010 for 30 s, spun it at 2000 rpm for 30 s, and then baked it at 95 °C for 5 min to remove the cyclopentanone in the SU-8 formula. We then exposed the photoresist and paper to 405 nm UV light (50 mW/cm2) for 10 s through a photo-mask (CAD/Art Services, Inc.) that was aligned using a mask aligner (OL-2 Mask Aligner, AB-M, Inc). After exposure, we baked the paper a second time at 95 °C for 5 min to cross-link the exposed portions of the resist. The unpolymerized photoresist was removed by soaking the paper in propylene glycol monomethyl ether acetate (PGMEA) (5 min), and by washing the pattern with propan-2-ol (3 × 10 mL). The paper was more hydrophobic after it was patterned, presumably due to residual resist bound to the paper, so we exposed the entire surface to an oxygen plasma for 10 s at 600 millitorr (SPI Plasma-Prep II, Structure Probe, Inc) to increase the hydrophilicity of the paper (Figures 2a and 2b). Figure 1 Chromatography paper patterned with photoresist. The darker lines are cured photoresist; the lighter areas are unexposed paper. (a) Patterned paper after absorbing 5 μL of Waterman red ink by capillary action. The central channel absorbs the sample ... Figure 2 Assays contaminated with (a) dirt, (b) plant pollen, and (c) graphite powder. The pictures were taken before and after running an artificial urine solution that contained 550 mM glucose and 75 μM BSA. The particulates do not move up the channels ... The patterned paper can be derivatized for biological assays by adding appropriate reagents to the test areas (Figures 1b and ​and2b).2b). In this communication, we demonstrate the method by detecting glucose and protein,[8] but the surface should be suitable for measuring many other analytes as well.[7] The glucose assay is based on the enzymatic oxidation of iodide to iodine,[9] where a color change from clear to brown is associated with the presence of glucose.[10] The protein assay is based on the color change of tetrabromophenol blue (TBPB) when it ionizes and binds to proteins;[11] a positive result in this case is indicated by a color change from yellow to blue. For the glucose assay, we spotted 0.3 μL of a 0.6 M solution of potassium iodide, followed by 0.3 μL of a 1:5 horseradish peroxidase/glucose oxidase solution (15 units of protein per mL of solution). For the protein assay, we spotted 0.3 μL of a 250-mM citrate buffer (pH 1.8) in a well separate from the glucose assay, and then layered 0.3 μL of a 3.3 mM solution of tetrabromophenol blue (TBPB) in 95% ethanol over the citrate buffer. The spotted reagents were allowed to air dry at room temperature. This pre-loaded paper gave consistent results for the protein assay regardless of storage temperature and time (when stored for 15 d both at 0 °C and at 23 °C, wrapped in aluminum foil). The glucose assay was sensitive to storage conditions, and showed decreased signal for assays run 24 h after spotting the reagents (when stored at 23 °C); when stored at 0 °C, however, the glucose assay was as sensitive after day 15 as it was on day 1. We measured artificial samples of glucose and protein in clinically relevant ranges (2.5-50 mM for glucose and 0.38-7.5 μM for bovine serum albumin (BSA))[12, 13] by dipping the bottom of each test strip in 5 μL of a pre-made test solution (Figure 2d). The fluid filled the entire pattern within ca. one minute, but the assays required 10-11 min for the paper to dry and for the color to fully develop.[14] In all cases, we observed color changes corresponding roughly in intensity to the amount of glucose and protein in the test samples, where the lowest concentrations define the lower limits to which these assays can be used (Figure 2e). For comparison, commercially-available dipsticks detect glucose at concentrations as low as 5 mM[7, 9] and protein as low as 0.75 μM;[6, 15] these limits indicate that these paper-based assays are comparable in sensitivity to commercial dipstick assays. Our assay format also allows for the measurement of multiple analytes. This paper-based assay is suitable for measuring multiple samples in parallel and in a relatively short period of time. For example, in one trial, one researcher was able to run 20 different samples (all with 550 mM glucose and 75 μM BSA) within 7.5 min (followed by another 10.5 min for the color to fully develop). An 18-min assay of this type—one capable of measuring two analytes in 20 different sample—may be efficient enough to use in high-throughput screens of larger sample pools. In the field, samples will not be measured under sterile conditions, and dust and dirt may contaminate the assays. The combination of paper and capillary action provides a mechanism for separating particulates from a biological fluid. As a demonstration, we purposely contaminated the artificial urine samples with quantities of dirt, plant pollen, and graphite powder at levels higher than we might expect to see in the samples in the field. These particulates do not move up the channels under the action of capillary wicking, and do not interfere with the assay (Figure 3). Paper strips have been used in biomedical assays for decades because they offer an inexpensive platform for colorimetric chemical testing.[1] Patterned paper has characteristics that lead to miniaturized assays that run by capillary action (e.g., without external pumping), with small volumes of fluids. These methods suggest a path for the development of simple, inexpensive, and portable diagnostic assays that may be useful in remote settings, and in particular, in less-industrialized countries where simple assays are becoming increasingly important for detecting disease and monitoring health,[16, 17], for environmental monitoring, in veterinary and agricultural practice and for other applications.

2,580 citations

Journal ArticleDOI
TL;DR: An efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets is reported, enabling facile large-area integration and patterning for mapping spatial pressure distribution.
Abstract: Flexible electronics hold great promise for wearable biomedical sensors. Here, the authors report a pressure sensor composed of gold nanowire-impregnated tissue paper, sandwiched between polydimethylsiloxane sheets, and demonstrate that the design is appropriate for large-area flexible electronics.

1,678 citations

Journal ArticleDOI
TL;DR: In the present review an attempt has been made to describe the salient features of conducting polymers and their wide applications in health care, food industries, environmental monitoring etc.
Abstract: Recently, conducting polymers have attracted much interest in the development of biosensors. The electrically conducting polymers are known to possess numerous features, which allow them to act as excellent materials for immobilization of biomolecules and rapid electron transfer for the fabrication of efficient biosensors. In the present review an attempt has been made to describe the salient features of conducting polymers and their wide applications in health care, food industries, environmental monitoring etc.

1,509 citations

Book
01 Apr 2014
TL;DR: The impacts of tobacco, obesity, and infections are just part of a broad spectrum of other agents and risk factors that contribute to cancer development and that, together, influence the striking geographical heterogeneity in incidence rates.
Abstract: The impacts of tobacco, obesity, and infections are just part of a broad spectrum of other agents and risk factors that contribute to cancer development and that, together, influence the striking geographical heterogeneity in incidence rates Certain of these risk factors are non-modifiable, for example race, familial genetic background, and reproductive and hormonal history Exposure to carcinogens may result from what are often characterized as lifestyle choices, which include alcohol consumption and behaviour in relation to avoidable sun exposure Includes chapters: 22 Tobacco smoking and smokeless tobacco use Genetic susceptibility to tobacco-related cancers p88 23 Alcohol consumption p96 41 Changing behaviours – tobacco control Australia’s plain packaging of tobacco products Tobacco and China p268

1,314 citations