scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

07 Jul 1972-Nature (Nature)-Vol. 238, Iss: 5358, pp 37-38
TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Abstract: ALTHOUGH the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm (ref. 1).
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials, and highlights crucial issues that should be addressed in future research activities.
Abstract: Semiconductor photocatalysis has received much attention as a potential solution to the worldwide energy shortage and for counteracting environmental degradation. This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials. We begin with a survey of efforts to explore suitable materials and to optimize their energy band configurations for specific applications. We then examine the design and fabrication of advanced photocatalytic materials in the framework of nanotechnology. Many of the most recent advances in photocatalysis have been realized by selective control of the morphology of nanomaterials or by utilizing the collective properties of nano-assembly systems. Finally, we discuss the current theoretical understanding of key aspects of photocatalytic materials. This review also highlights crucial issues that should be addressed in future research activities.

3,265 citations

Journal ArticleDOI
TL;DR: An overview of the field of semiconductor photocatalysis can be found in this paper, where a brief examination of its roots, achievements and possible future is presented, and the semiconductor titanium dioxide (TiO 2 ) features predominantly in past and present work.
Abstract: The interest in heterogeneous photocatalysis is intense and increasing, as shown by the number of publications on this theme which regularly appear in this journal, and the fact that over 2000 papers have been published on this topic since 1981. This article is an overview of the field of semiconductor photocatalysis : a brief examination of its roots, achievements and possible future. The semiconductor titanium dioxide (TiO 2 ) features predominantly in past and present work on semiconductor photocatalysis; as a result, in the most of the examples selected in this overview to illustrate various points the semiconductor is TiO 2 .

3,245 citations

Journal ArticleDOI
TL;DR: In this paper, the progress of the scientific research on TiO2 photocatalysis as well as its industrial applications are reviewed, and future prospects of this field mainly based on the present authors' work.
Abstract: Photocatalysis has recently become a common word and various products using photocatalytic functions have been commercialized. Among many candidates for photocatalysts, TiO2 is almost the only material suitable for industrial use at present and also probably in the future. This is because TiO2 has the most efficient photoactivity, the highest stability and the lowest cost. More significantly, it has been used as a white pigment from ancient times, and thus, its safety to humans and the environment is guaranteed by history. There are two types of photochemical reaction proceeding on a TiO2 surface when irradiated with ultraviolet light. One includes the photo-induced redox reactions of adsorbed substances, and the other is the photo-induced hydrophilic conversion of TiO2 itself. The former type has been known since the early part of the 20th century, but the latter was found only at the end of the century. The combination of these two functions has opened up various novel applications of TiO2, particularly in the field of building materials. Here, we review the progress of the scientific research on TiO2 photocatalysis as well as its industrial applications, and describe future prospects of this field mainly based on the present authors' work.

3,008 citations

Journal ArticleDOI
06 Dec 2001-Nature
TL;DR: The findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for ‘clean’ hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites.
Abstract: The photocatalytic splitting of water into hydrogen and oxygen using solar energy is a potentially clean and renewable source for hydrogen fuel. The first photocatalysts suitable for water splitting, or for activating hydrogen production from carbohydrate compounds made by plants from water and carbon dioxide, were developed several decades ago. But these catalysts operate with ultraviolet light, which accounts for only 4% of the incoming solar energy and thus renders the overall process impractical. For this reason, considerable efforts have been invested in developing photocatalysts capable of using the less energetic but more abundant visible light, which accounts for about 43% of the incoming solar energy. However, systems that are sufficiently stable and efficient for practical use have not yet been realized. Here we show that doping of indium-tantalum-oxide with nickel yields a series of photocatalysts, In(1-x)Ni(x)TaO(4) (x = 0-0.2), which induces direct splitting of water into stoichiometric amounts of oxygen and hydrogen under visible light irradiation with a quantum yield of about 0.66%. Our findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for 'clean' hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites.

2,931 citations


Additional excerpts

  • ...The first photocatalysts suitable for water splittin...

    [...]