scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives

14 Nov 2016-Chemical Reviews (American Chemical Society)-Vol. 116, Iss: 23, pp 14307-14378
TL;DR: This review deals with the redox properties and photoluminescence behavior of this collection of compounds, as well as their influence on the properties of materials and devices whose working principles are related to electron-transfer or electron-promotion phenomena.
Abstract: Icosahedral boranes, carboranes, and metallacarboranes are extraordinarily robust compounds with desirable properties such as thermal and redox stability, chemical inertness, low nucleophilicity, and high hydrophobicity, making them attractive for several applications such as medicine, nanomaterials, molecular electronics, energy, catalysis, environmental chemistry, and other areas. The hydrogen atoms in these clusters can be replaced by convenient groups that open the way to a chemical alternative to conventional "organic" or "organometallic" realms. Icosahedral boron cluster derivatives have been reviewed from different perspectives; however, there is a need for a review dedicated to the redox and photophysical characteristics of easily accessible borane and carborane derivatives, which are excellent materials for a wide range of applications. This review deals with the redox properties and photoluminescence behavior of this collection of compounds, as well as their influence on the properties of materials and devices whose working principles are related to electron-transfer or electron-promotion phenomena. We hope that this review will be of great value to boron cluster scientists and researchers working in the photoluminescence and electrochemistry fields who are interested in exploring the possibilities of these unique and promising systems.
Citations
More filters
Journal ArticleDOI
TL;DR: New directions in main group catalysis utilized to achieve some of the most challenging catalytic reactions such as C-F, C-H, and C-C functionalizations that are difficult or impossible to realize with transition metals are covered.
Abstract: Classically closo-carborane anions, particularly [HCB11H11]− and [HCB9H9]−, and their derivatives have primarily been used as weakly coordinating anions to isolate reactive intermediates, platforms for stoichiometric and catalytic functionalization, counteranions for simple Lewis acid catalysis, and components of materials like liquid crystals. The aim of this article is to educate the reader on the contemporary nonclassical applications of these anions. Specifically, this review will cover new directions in main group catalysis utilized to achieve some of the most challenging catalytic reactions such as C–F, C–H, and C–C functionalizations that are difficult or impossible to realize with transition metals. In addition, the review will cover the utilization of the clusters as dianionic C σ-bound ligands for coordination chemistry, ligand substituents for coordination chemistry and advanced catalyst design, and covalently bound spectator substituents to stabilize radicals. Furthermore, their applications a...

189 citations

Journal ArticleDOI
TL;DR: A review of recent advances in transition metal catalyzed vertex-specific BH functionalization of carbon-boron molecular clusters concludes that selection of a cage C-H bonds for functionalization is very challenging.
Abstract: Carboranes, a class of carbon-boron molecular clusters, are often viewed as three-dimensional analogues of benzene. They are finding increasing applications as useful functional building blocks in materials science, medicine, organometallic/coordination chemistry and more. Thus, functionalization of carboranes has received considerable attention. In comparison with the weakly acidic cage C-H bonds that can be readily functionalized, selective cage B-H functionalization among ten chemically similar BH vertices in o-carboranes is very challenging. Only in the recent few years, considerable progress has been made in transition metal catalyzed vertex-specific BH functionalization. This review summarizes recent advances in this research area.

152 citations

Journal ArticleDOI
TL;DR: This mini-review introduces three kinds of fundamental photochemical properties, aggregation-induced emission, twisted intramolecular charge transfer in crystal and environment-sensitive excimer formation in solid.
Abstract: o-Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o-carborane units were found to show suppressed aggregation-induced quenching and intense solid-state emission; they also show potential for the development of stimuli-responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation-induced emission, twisted intramolecular charge transfer in crystals, and environment-sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos-, vapo-, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o-carborane derivatives.

145 citations

Journal ArticleDOI
TL;DR: The results of cyclic voltammetry (CV) suggest that oxidation/reduction reactions take place at the carboranyl motif, and these compounds show a reductive-oxidative mechanism in contrast to other organic materials that show oxidative-reductive mechanisms.
Abstract: The aggregation-induced electrochemiluminescence (AIECL) of carboranyl carbazoles in aqueous media was investigated for the first time. Quantum yields, morphologies, and particle sizes were observed to determine the electrochemiluminescence (ECL) performance of these aggregated organic dots (ODs). All compounds exhibit much higher ECL stability and intensity than the carborane-free compound, demonstrating the essential role of the carboranyl motif. Moreover, the results of cyclic voltammetry (CV) suggest that oxidation/reduction reactions take place at the carboranyl motif. The excited states of ODs were proposed to be generated by the mechanism of surface state transitions. More importantly, these compounds show a reductive-oxidative mechanism in contrast to other organic materials that show oxidative-reductive mechanisms. Our experiments and data have established the relation between AIE organic structures and ECL properties that has a strong potential for biological and diagnostic applications.

142 citations

Journal ArticleDOI
TL;DR: The possible clinical implications of the new and improved boron-based biologically active compounds for BNCT that are reported to have in vivo and/or in vitro efficacy are focused on.
Abstract: Boron compounds now have many applications in a number of fields, including Medicinal Chemistry. Although the uses of boron compounds in pharmacological science have been recognized several decades ago, surprisingly few are found in pharmaceutical drugs. The boron-containing compounds epitomize a new class for medicinal chemists to use in their drug designs. Carboranes are a class of organometallic compounds containing carbon (C), boron (B), and hydrogen (H) and are the most widely studied boron compounds in medicinal chemistry. Additionally, other boron-based compounds are of great interest, such as dodecaborate anions, metallacarboranes and metallaboranes. The boron neutron capture therapy (BNCT) has been utilized for cancer treatment from last decade, where chemotherapy and radiation have their own shortcomings. However, the improvement in the already existing (BPA and/or BSH) localized delivery agents or new tumor-targeted compounds are required before realizing the full clinical potential of BNCT. The work outlined in this short review addresses the advancements in boron containing compounds. Here, we have focused on the possible clinical implications of the new and improved boron-based biologically active compounds for BNCT that are reported to have in vivo and/or in vitro efficacy.

117 citations

References
More filters
Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: 1. Advantages and disadvantages of Chemical Redox Agents, 2. Reversible vs Irreversible ET Reagents, 3. Categorization of Reagent Strength.
Abstract: 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 1. Radical Cations 891 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich Compounds 894

3,432 citations

Journal ArticleDOI
TL;DR: “United the authors stand, United they fall”–Aesop.
Abstract: "United we stand, divided we fall."--Aesop. Aggregation-induced emission (AIE) refers to a photophysical phenomenon shown by a group of luminogenic materials that are non-emissive when they are dissolved in good solvents as molecules but become highly luminescent when they are clustered in poor solvents or solid state as aggregates. In this Review we summarize the recent progresses made in the area of AIE research. We conduct mechanistic analyses of the AIE processes, unify the restriction of intramolecular motions (RIM) as the main cause for the AIE effects, and derive RIM-based molecular engineering strategies for the design of new AIE luminogens (AIEgens). Typical examples of the newly developed AIEgens and their high-tech applications as optoelectronic materials, chemical sensors and biomedical probes are presented and discussed.

2,322 citations