scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrochromic materials and devices: present and future

02 Jan 2003-Materials Chemistry and Physics (Elsevier)-Vol. 77, Iss: 1, pp 117-133
TL;DR: The most important examples from major classes of electrochromic materials namely transition metal oxides, Prussian blue, phthalocyanines, viologens, fullerenes, dyes and conducting polymers (including gels) are described in this article.
About: This article is published in Materials Chemistry and Physics.The article was published on 2003-01-02. It has received 743 citations till now. The article focuses on the topics: Electrochromic devices & Electrochromism.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a conceptual model for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal ammorphous state, is given for thin film deposition by sputtering, electronic band structure and ion diffusion.
Abstract: Electrochromic (EC) materials are able to change their optical properties, reversibly and persistently, by the application of an electrical voltage. These materials can be integrated in multilayer devices capable of modulating the optical transmittance between widely separated extrema. We first review the recent literature on inorganic EC materials and point out that today's research is focused on tungsten oxide (colouring under charge insertion) and nickel oxide (colouring under charge extraction). The properties of thin films of these materials are then discussed in detail with foci on recent results from two comprehensive investigations in the authors' laboratory. A logical exposition is obtained by covering, in sequence, structural features, thin film deposition (by sputtering), electronic band structure, and ion diffusion. A novel conceptual model is given for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal amorphous state. It is also shown that the conduction band density of states is obtainable from simple electrochemical chronopotentiometry. Ion intercalation causes the charge-compensating electrons to enter localized states, implying that the optical absorption underlying the electrochromism can be described as ensuing from transitions between occupied and empty localized conduction band states. A fully quantitative theory of such transitions is not available, but the optical absorption can be modeled more phenomenologically as due to a superposition of transitions between different charge states of the W ions (6+, 5+, and 4+). The Ni oxide films were found to have a porous structure comprised of small grains. The data are consistent with EC coloration being a surface phenomenon, most likely confined to the outer parts of the grains. Initial electrochemical cycling was found to transform hydrated Ni oxide into hydroxide and oxy-hydroxide phases on the grain surfaces. Electrochromism in thus stabilized films is consistent with reversible changes between Ni hydroxide and oxy-hydroxide, in accordance with the Bode reaction scheme. An extension of this model is put forward to account for changes of NiO to Ni2O3. It was demonstrated that electrochromism is associated solely with proton transfer. Data on chemical diffusion coefficients are interpreted for polycrystalline W oxide and Ni oxide in terms of the lattice gas model with interaction. The later part of this review is of a more technological and applications oriented character and is based on the fact that EC devices with large optical modulation can be accomplished essentially by connecting W-oxide-based and Ni-oxide-based films through a layer serving as a pure ion conductor. Specifically, we treat methods to enhance the bleached-state transmittance by mixing the Ni oxide with other oxides characterized by wide band gaps, and we also discuss pre-assembly charge insertion and extraction by facile gas treatments of the films, as well as practical device manufacturing and device testing. Here the emphasis is on novel flexible polyester-foil-based devices. The final part deals with applications with emphasis on architectural “smart” windows capable of achieving improved indoor comfort jointly with significant energy savings due to lowered demands for space cooling. Eyewear applications are touched upon as well.

1,156 citations

Journal ArticleDOI
TL;DR: The Robust Envelope Construction Details for Buildings of the 21st Century (ROBUST) project as mentioned in this paper was supported by the Research Council of Norway, AF Gruppen, Glava, Hunton Fiber as, Icopal, Isola, Jackon, maxit, Moelven ByggModul, Ramboll, Skanska, Statsbygg and Takprodusentenes forskningsgruppe through the SINTEF/NTNU research project.

1,127 citations


Cites background from "Electrochromic materials and device..."

  • ...PB is the prototype of a polynuclear transition metal hexacyanometallate with the general formula Mk[M(CN)6]l (l,k integers), where M 0 and M00 are transition metals with different formal oxidation numbers [127]....

    [...]

Journal ArticleDOI
TL;DR: A review of electrochromic (EC) polymers and their applications in absorption/transmission, reflective, and patterned ECDs is presented in this article, where fundamental properties of EC materials such as optical contrast, coloration efficiency, switching speed, and stability are described along with the commonly used characterization methods.
Abstract: A review of electrochromic (EC) polymers and their applications in absorption/transmission, reflective, and patterned electrochromic devices (ECDs) is presented. Fundamental properties of EC materials such as optical contrast, coloration efficiency, switching speed, and stability are described along with the commonly used characterization methods. The origin of electrochromism in conjugated polymers is explained in terms of the electronic structure changes in the backbone upon doping/dedoping. The ability to tailor the EC properties of conjugated polymers and tune their color states via modification of the polymer structure is demonstrated. Multicolor electrochromic materials can be obtained by substitution of a parent polymer and controlled polymerization of comonomers and with blends and laminates of homopolymers. Absorption/transmission-type ECDs from complementarily colored polymers and reflective-type ECDs on metalized substrates are illustrated with several examples from the literature. Finally, sev...

732 citations

Journal ArticleDOI
TL;DR: The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control.
Abstract: Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

703 citations

Journal ArticleDOI
TL;DR: This article has reviewed several examples from research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices.
Abstract: Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers’ work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated.

648 citations

References
More filters
Book
01 Jan 1989
TL;DR: In this paper, the most recent research on the fundamental and applied chemistry of the phthalocyanine derivatives is presented in a detailed and comprehensive way, including their redox character, essential to many of their potential industrial applications.
Abstract: This book brings together the most recent research on the fundamental and applied chemistry of the phthalocyanine derivatives. More particularly, their redox character, essential to many of their potential industrial applications, are presented in this book in a detailed and comprehensive way. Together, the three volumes cover a broad spectrum of the physical and chemical aspects of the phtalocyanines and some of their relatives, providing a firm, up-to-date basis for future exploration of these very important species. The unique properties of phthalocyanines have generated worldwide interest in their use in chemical sensors, electronic display devices, photoconduction, fuel cells, molecular metals, electrocatalysis, molecular computers, pollution control devices, liquid crystals, photodynamic therapy and biological stains.

2,338 citations

Book ChapterDOI
TL;DR: In this article, a review is concerned with the neglected class of inorganic compounds, which contain ions of the same element in two different formal states of oxidation, and a number of references cite that many individual examples of this class have been studied, yet they have very rarely been treated as a class, and there has never before, to our knowledge, been a systematic attempt to classify their properties in terms of their electronic and molecular structures.
Abstract: Publisher Summary This review is concerned with the neglected class of inorganic compounds, which contain ions of the same element in two different formal states of oxidation. Although the number of references cited in our review show that many individual examples of this class have been studied, yet they have very rarely been treated as a class, and there has never before, to our knowledge, been a systematic attempt to classify their properties in terms of their electronic and molecular structures. In the past, systems containing an element in two different states of oxidation have gone by various names, the terms “mixed valence,” nonintegral valence,” “mixed oxidation,” “oscillating valency,” and “controlled valency” being used interchangeably. Actually, none of these is completely accurate or all-embracing, but in our hope to avoid the introduction of yet another definition, we have somewhat arbitrarily adopted the phrase “mixed valence” for the description of these systems. The concept of resonance among various valence bond structures is one of the cornerstones of modern organic chemistry.

2,208 citations

Book
01 Jan 1995
TL;DR: In this paper, a case study on tungsten oxide is presented, where the authors discuss the preparation, structure, and composition of sputter-deposited tungstern oxide films.
Abstract: Part 1 Case study on tungsten oxide: bulk crystalline tungsten oxide tungsten oxide films - preparation, structure, and composition of evaporated films tungsten oxide films - preparation, structure, and composition of sputter-deposited films tungsten oxide films - preparation, structure, and composition of electrochemically and chemically prepared films tungsten oxide films - ion intercalation/deintercalation studied by electrochemical techniques tungsten oxide films - ion intercalation/deintercalation studied by physical techniques tungsten oxide films -ultraviolet absorption and semiconductor bandgap tungsten oxide films - optical properties in the luminous and near-infrared range tungsten oxide films - theoretical models for the optical properties tungsten oxide films - electrical properties. Part 2 Electrochromism among the oxides (except tungsten oxide): molybdenum oxide films miscellaneous tungsten- and molybdenum-oxide-containing films iridium oxide films titanium oxide films manganese oxide films vanadium dioxide films vanadium pentoxide films nickel oxide films cobalt oxide films niobium oxide films miscellaneous oxide films systematics for the electrochromism in transition metal oxides inorganic non-oxide electrochromic materials. Part 3 Electrochromic devices: transparent electrical conductors electrolytes and ion conductors ion storage materials - brief overview devices with liquid electrolytes devices with solid inorganic electrolytes and ion conductors devices with polymer electrolytes time-dependent device performance - a unified treatment.

1,903 citations


"Electrochromic materials and device..." refers background in this paper

  • ...A typical and most widely studied example is the tungsten trioxide (WO3) system, since its electrochromism was first reported in 1969 [10–13]....

    [...]

  • ...The TMO films can be electrochemically switched to a non-stoichiometric redox state which has an intense electrochromic absorption band due to optical intervalence charge transfer [10–13]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the progress that has taken place since 1993 with regard to film deposition, characterization by physical and chemical techniques, optical properties, as well as electrochromic device assembly and performance is reviewed.

1,304 citations