scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrochromic response in polypyrrole sensitized by Prussian blue

31 Jul 1998-Chemical Physics Letters (North-Holland)-Vol. 292, Iss: 1, pp 218-222
TL;DR: In this paper, the electrochromic response of polypyrrole (PPy)/Prussian blue (PB) composite films has been studied in different electrolytes such as KCl, LiClO4, K2SO 4, KNO3, KI/I2.
About: This article is published in Chemical Physics Letters.The article was published on 1998-07-31. It has received 38 citations till now. The article focuses on the topics: Electrochromism & Prussian blue.
Citations
More filters
Journal ArticleDOI
TL;DR: Methylene blue (MB) at small concentration is used as a photosensitizer in the solid state photoelectrochemical cells fabricated using doped and undoped polypyrrole (Ppy) coated electrodes sandwiched with solid polymer electrolyte (SPE) viz. polyvinyl alcohol (PVA) doped with phosphoric acid as discussed by the authors.

15 citations

Journal ArticleDOI
TL;DR: In this article, the stability of polypyrrole composites in the form of a sedimented powder, or a film on the surface of Pt and ITO-coated glass was characterized by various physical and electrochemical methods.
Abstract: Composite materials of Prussian Blue–polypyrrole (PB/PPy) were obtained via chemical redox process in mixed solution of iron (III), hexacyanoferrate (III), and pyrrole with chloride or nitrate supporting electrolyte. Synthesized composites in the form of a sedimented powder, or a film on the surface of Pt and ITO-coated glass, were characterized by various physical and electrochemical methods. Stability of PB/PPy films on Pt substrate was tested in electrocatalytic reaction of hydrogen peroxide reduction in weakly acidic medium (pH 6) as well as on ITO-coated glass substrate via electrochromic (spectroelectrochemical) measurements. Stability period of the amperometric response in 1 mM H2O2 solution for films on Pt substrate synthesized in chloride media is 20 times longer than that of pure PB films obtained electrochemically in potentiostatic mode. Morphology of PB/PPy films has been found to depend on the composition of supporting electrolyte. Synthesis of PB/PPy composites in nitrate electrolyte leads to formation of a high-quality morphology, whereas PB/PPy films obtained in chloride solutions are cracked. In conformity with this observation, the stability period of the H2O2 electroreduction for nitrate-synthesized films on Pt substrate was about 150 min, i.e., 80 times longer than that of pure Prussian Blue films without polymeric support and four times longer than that of chloride-synthesized films. Stability of the electrochromic response of PB/PPy films formed in nitrate media is 10 times higher than pure PB film.

14 citations

Journal ArticleDOI
TL;DR: In this paper, the electrocatalytic properties of conducting polypyrrole (PPy) films doped with palladium chloride and irradiated with heavy ion beams was studied for methanol oxidation.

14 citations

Journal ArticleDOI
TL;DR: In this article, a galvanostatic mode of electrodeposition was used to prepare polypyrrole thin films for structural, optical and surface wettability study and Fourier transform infrared spectroscopy showed the benzoid and qunoid-like structures in polypryl thin films.
Abstract: Polypyrrole thin films were prepared by galvanostatic mode of electrodeposition. The applied constant current density changes structural, optical and surface wettability properties of polypyrrole thin films. The prepared films were characterized for structural, optical and surface wettability study. Fourier transform infrared spectroscopy shows the benzoid and qunoid like structures in polypyrrole films. The UV-Visible absorption study shows that the optical density varies with the applied deposition current density. The band gap energy calculated from the Tauc’s plot was found to be 2.25 eV and shows the film is in semiconductor nature. The surface wettability study confirms hydrophilic nature of polypyrrole films.

13 citations

Journal ArticleDOI
TL;DR: In this paper, composite materials of Prussian blue-polypyrrole (PB/PPy) on the surface of indium tin oxide (ITO)-coated glasses were obtained via one-step chemical (redox) and one-stage electrochemical procedures in mixed solution of iron, hexacyanoferrate (III), and pyrrole with various concentration ratios of components in nitrate supporting electrolyte.
Abstract: Composite materials of Prussian blue–polypyrrole (PB/PPy) on the surface of indium tin oxide (ITO)-coated glasses were obtained via one-step chemical (redox) and one-stage electrochemical procedures in mixed solution of iron (III), hexacyanoferrate (III), and pyrrole with various concentration ratios of components in nitrate supporting electrolyte. Electrochemical stability of composite films depends on the amount of Py in synthetic solution, whereas color contrast coefficient values depend on the type of synthetic procedure. PB/PPy film electrochromic response (tested by spectroelectrochemical potentiodynamic measurements) was compared with response of both pure PB and pure PPy films. It was shown that degradation of composite films occurs due to PB component instability in Prussian white form. The highest value of color contrast coefficient and great electrochemical stability were revealed for composite films obtained via redox-synthesis procedure from solution with 0.1 mM [Fe3+ + Fe(CN)6 3−] and 1.0 mM Ру (PB/PPy-Ch-1:1:10 system).

13 citations


Cites background from "Electrochromic response in polypyrr..."

  • ...The principal obstacle for such applications of PB-based materials is the fast degradation of its electrochromic properties, mostly due to peeling off fragments of the electroactive film from the substrate [4]....

    [...]

References
More filters
Book
01 Jan 1986
TL;DR: In this paper, the authors presented the theory and properties of conjugated polymers, including transport, optical, and self-assembly properties of poly(3,4-Ethylenedioxythiophene)-polymers.
Abstract: Volume 1: Conjugated Polymers: Theory, Synthesis, Properties, and Characterization PART 1: THEORY OF CONJUGATED POLYMERS On the Transport, Optical, and Self-Assembly Properties of -Conjugated Materials: A Combined Theoretical/Experimental Insight D. Beljonne, J. Cornil, V. Coropceanu, D.A. da Silva Filho, V. Geskin, R. Lazzaroni, P. Leclere, and J.-L. Bredas Theoretical Studies of Electron-Lattice Dynamics in Organic Systems S. Stafstroem PART 2: SYNTHESIS AND CLASSES OF CONJUGATED POLYMERS Helical Polyacetylene Synthesized in Chiral Nematic Liquid Crystals K. Akagi Synthesis and Properties of Poly(arylene vinylene)s A.C. Grimsdale and A.B. Holmes Blue-Emitting Poly(para-Phenylene)-Type Polymers E.J.W. List and U. Scherf Poly(paraPhenyleneethynylene)s and Poly(aryleneethynylene)s: Materials with a Bright Future U.H.F. Bunz Polyaniline Nanofibers: Synthesis, Properties, and Applications J. Huang and R.B. Kaner Recent Advances in Polypyrrole S.H. Cho, K.T. Song, and J.Y. Lee Regioregular Polythiophenes M. Jeffries-El and R.D. McCullough Poly(3,4-Ethylenedioxythiophene)-Scientific Importance, Remarkable Properties, and Applications S. Kirchmeyer, K. Reuter, and J.C. Simpson Thienothiophenes: From Monomers to Polymers G.A. Sotzing, V. Seshadri, and F.J. Waller Low Bandgap Conducting Polymers S.C. Rasmussen and M. Pomerantz Advanced Functional Polythiophenes Based on Tailored Precursors P. Blanchard, P. Leriche, P. Frere, and J. Roncali Structure-Property Relationships and Applications of Conjugated Polyelectrolytes K.S. Schanze and X. Zhao PART 3: PROPERTIES AND CHARACTERIZATION OF CONJUGATED POLYMERS Insulator-Metal Transition and Metallic State in Conducting Polymers A.J. Epstein One-Dimensional Charge Transport in Conducting Polymer Nanofibers A.N. Aleshin and Y.W. Park Structure Studies of - and - Conjugated Polymers M.J. Winokur Electrochemistry of Conducting Polymers P. Audebert and F. Miomandre Internal Fields and Electrode Interfaces in Organic Semiconductor Devices: Noninvasive Investigations via Electroabsorption T.M. Brown and F. Cacialli Electrochromism of Conjugated Conducting Polymers A.L. Dyer and J.R. Reynolds Photoelectron Spectroscopy of Conjugated Polymers M.P. de Jong, G. Greczyniski, W. Osikowicz, R. Friedlein, X. Crispin, M. Fahlman, and W.R. Salaneck Ultrafast Exciton Dynamics and Laser Action in -ConjugatedSemiconductors Z. Valy Vardeny and O. Korovyanko Volume 2: Conjugated Polymers: Processing and Applications PART 1: PROCESSING OF CONJUGATED POLYMERS Conductive Polymers as Organic Nanometals B. Wessling Conducting Polymer Fiber Production and Applications I.D. Norris and B.R. Mattes Inkjet Printing and Patterning of PEDOT-PSS: Application to Optoelectronic Devices Y. Yoshioka and G.E. Jabbour Printing Organic Electronics on Flexible Substrates N.D. Robinson and M. Berggren PART 2: APPLICATIONS AND DEVICES BASED ON CONJUGATED POLYMERS Polymers for Use in Polymeric Light-Emitting Diodes: Structure-Property Relationships H. Christian-Pandya, S. Vaidyanathan, and M. Galvin Organic Electro-Optic Materials L.R. Dalton Conjugated Polymer Electronics-Engineering Materials and Devices N. Tessler, J. Veres, O. Globerman, N. Rappaport, Y. Preezant, Y. Roichman, O. Solomesch, S. Tal, E. Gershman, M. Adler, V. Zolotarev, V. Gorelik, and Y. Eichen Electrical Bistable Polymer Films and Their Applications in Memory Devices J. Ouyang, C.-W. Chu, R.J. Tseng, A. Prakash, and Y. Yang Electroactive Polymers for Batteries and Supercapacitors J.A. Irvin, D.J. Irvin, and J.D. Stenger-Smith Conjugated Polymer-Based Photovoltaic Devices A.J. Mozer and N.S. Sariciftci Biomedical Applications of Inherently Conducting Polymers (ICPs),P.C. Innis, S.E. Moulton, and G.G. Wallace Biosensors Based on Conducting Electroactive Polymers S. Brahim, A.M. Wilson, and A. Guiseppi-Elie Optical Biosensors Based on Conjugated Polymers K. Peter, R. Nilsson, and O. Inganas Conjugated Polymers for Microelectromechanical and Other Microdevices G.M. Spinks and E. Smela Corrosion Protection Using Conducting Polymers D.E. Tallman and G.P. Bierwagen Artificial Muscles T.F. Otero

5,843 citations

Journal ArticleDOI
01 Jan 1992-Nature
TL;DR: In this paper, a flexible polyethylene terephthalate (PET) based light-emitting diodes (LEDs) were constructed from conjugated polymers, using poly(ethylene-terephthalates) as the substrate, soluble poly-aniline as the hole-injecting electrode, substituted poly(1,4-phenylene-vinylene) as electroluminescent layer and calcium as the electron-injection top contract.
Abstract: THE recent fabrication of light-emitting diodes (LEDs) from conjugated polymers1,2demonstrates the technological potential of this class of electronic materials. A variety of colours are possible, because the wavelength of luminescence emission can be chemically tuned during synthesis1–4. In addition, the mechanical properties of polymers suggest that light-emitting structures can be made that are more flexible than their inorganic counterparts, provided appropriate materials can be found for the substrate and electrodes. Here we report the fabrication of a fully flexible LED using poly(ethylene terephthalate) as the substrate, soluble poly-aniline as the hole-injecting electrode, a substituted poly(1,4-phenylene-vinylene) as the electroluminescent layer and calcium as the electron-injecting top contract. The structure is mechanically robust and may be sharply bent without failure. The LED is easily visible under room lighting and has an external quantum efficiency of about 1%. With a turn-on voltage for light emission of 2–3 V, the 'plastic' LED demonstrates that this unique combination of optical, electrical and mechanical properties can be used to make novel structures that are compatible with conventional devices.

2,513 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported visible light emission from Shottky diodes made from semiconducting polymers, confirming the discovery by the Cambridge group [Nature 347, 539 (1990)].
Abstract: We report visible light emission from Shottky diodes made from semiconducting polymers, confirming the discovery by the Cambridge group [Nature 347, 539 (1990)]. Our results demonstrate that light‐emitting diodes can be fabricated by casting the polymer film from solution with no subsequent processing or heat treatment required. Electrical characterization reveals diode behavior with rectification ratios greater than 104. We propose that tunneling of electrons from the recitifying metal contact into the gap states of the positive polaron majority carriers dominates current flow and provides the mechanism for light emission.

2,038 citations

BookDOI
01 Jan 1993
TL;DR: In this article, electrical and electrochemical properties of ion conducting polymers are discussed. But they do not consider the properties of polymers with polymer electrolytes, as they do in this paper.
Abstract: Preface. Electrical and electrochemical properties of ion conducting polymers. Electrical and electrochemical properties of electronically conducting polymers. Highly-conductive polymer electrolytes. Solvation mechanisms in low molecular weight polyethers. Lithium batteries with polymer electrodes. Lithium polymer batteries. Electrochromic devices. Laminated electrochromic displays and windows. Functionalized conductive polymer membranes/films. Electroactive polymers in chemical sensors.

824 citations