scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids

12 Sep 2006-Surface & Coatings Technology (Elsevier)-Vol. 201, Iss: 1, pp 1-9
TL;DR: In this article, the electrodeposition and surface morphology of aluminium on tungsten (W) and aluminium (Al) electrodes from 2 −: 1 molar ratio AlCl 3 -[EMIm]Cl ionic liquids were investigated.
Abstract: The electrodeposition and surface morphology of aluminium on tungsten (W) and aluminium (Al) electrodes from 2 : 1 molar ratio AlCl 3 –[EMIm]Cl ionic liquids were investigated. Analyses of the chronoamperograms indicate that the deposition process of aluminium on W substrates was controlled by instantaneous nucleation with diffusion-controlled growth, while the deposition processes of aluminium on Al electrodes were found to be associated with kinetic limitations. Constant potential deposition experiments showed that the electrodeposits obtained on both W and Al electrodes between − 0.10 and − 0.40 V (vs. Al(III)/Al) are dense, continuous and well adherent. Dense aluminium deposits were also obtained on Al substrates using constant current deposition between 10 and 70 mA/cm 2 , and the current efficiency was found to be dependent of the current density varying from 85% to 100%.
Citations
More filters
Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: A rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode, found to enable fast anion diffusion and intercalation, and to withstand more than 7,500 cycles without capacity decay.
Abstract: An aluminium-ion battery is reported that can charge within one minute, and offers improved cycle life compared to previous devices; it operates through the electrochemical deposition and dissolution of aluminium at the anode, and the intercalation/de-intercalation of chloroaluminate anions into a novel graphitic-foam cathode. The low cost and useful electrical properties of aluminium suggest that rechargeable Al-ion batteries could offer viable and safe battery technology, but problems with cathode materials, poor cycling performance and other complications have persisted. Here Hongjie Dai and colleagues describe an Al-ion battery that can charge within one minute and offers substantially improved cycle life with little decay in capacity compared to previous devices reported in the literature. The battery operates through the electrochemical deposition and dissolution of Al and intercalation/de-intercalation of chloroaluminate anions into a novel 3D graphitic foam cathode using a non-flammable ionic liquid electrolyte. The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage1,2. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity3. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration4, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1–0.2 volts6 or 1.8–0.8 volts7) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26–85 per cent over 100 cycles)4,5,6,7. Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g–1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g–1 (equivalent to ~3,000 W kg–1), and to withstand more than 7,500 cycles without capacity decay.

1,671 citations

Journal ArticleDOI
TL;DR: A novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode with very stable electrochemical behaviour is reported.

601 citations

Journal ArticleDOI
TL;DR: The evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, thosebased on non-aqueously electrolytes, are described, attempting to forecast their chances to reach the status of practical energy storage systems.
Abstract: A critical overview of the latest developments in the aluminum battery technologies is reported. The substitution of lithium with alternative metal anodes characterized by lower cost and higher abundance is nowadays one of the most widely explored paths to reduce the cost of electrochemical storage systems and enable long-term sustainability. Aluminum based secondary batteries could be a viable alternative to the present Li-ion technology because of their high volumetric capacity (8040 mAh cm(-3) for Al vs 2046 mAh cm(-3) for Li). Additionally, the low cost aluminum makes these batteries appealing for large-scale electrical energy storage. Here, we describe the evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, those based on non-aqueous electrolytes. Particular attention has been dedicated to the latest development of electrolytic media characterized by low reactivity towards other cell components. The attention is then focused on electrode materials enabling the reversible aluminum intercalation-deintercalation process. Finally, we touch on the topic of high-capacity aluminum-sulfur batteries, attempting to forecast their chances to reach the status of practical energy storage systems.

579 citations

Journal ArticleDOI
TL;DR: Two different intercalation processes involving chloroaluminate anions at the two discharging plateaus are shown, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy, and theoretical calculations are employed to investigate the intercalated behaviour of choloraluminateAnions in the graphite electrode.
Abstract: Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g−1 with Coulombic efficiency ∼98%, at a current density of 99 mA g−1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60 mAh g−1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode. Rechargeable aluminium ion batteries are an emerging class of energy storage device. Here the authors reveal high-quality natural graphite as a promising cathode for Al-ion batteries, also identifying chloroaluminate anion intercalation in graphite by Raman spectroscopy.

456 citations

References
More filters
Book
01 Jan 1973
TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Abstract: CRC handbook of chemistry and physics , CRC handbook of chemistry and physics , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

52,268 citations

Book
01 Jan 2002
TL;DR: The early years of Ionic liquid production were covered in this article, where a new generation of soluble supports for Supported Organic Synthesis (SPOS) was proposed. But this support was not applied to the task-specific Ionic liquids.
Abstract: Preface A Note From The Editors THE EARLY YEARS OF IONIC LIQUIDS SYNTHESIS AND PURIFICATION Synthesis Quality Aspects and other Questions Related to Commercial Ionic Liquid Production Synthesis of Task-specific Ionic Liquids PHYSICO-CHEMICAL PROPERTIES Melting Points Viscosity and Density Solubility and Solvation in Ionic Liquids Gas Solubilities Polarity Electrochemistry STRUCTURE AND DYNAMICS Order in the Liquid State and Structure Computational Modelling of Ionic Liquids Translational Diffusion Molecular Reorientational Dynamics ORGANIC SYNTHESIS Ionic Liquids in Organic Synthesis: Effects on Rate and Selectivity Stoicheiometric Organic Reactions and Acid-catalysed Reactions in Ionic Liquids Transition Metal Catalysis in Ionic Liquids Ionic Liquids in Multiphasic Reactions Task Specific Ionic Liquids (TSILs): A New Generation of Soluble Supports for Supported Organic Synthesis (SPOS) Supported Ionic Liquid Phase Catalysts Multiphasic Catalysis Using Ionic Liquids in Combination with Compressed CO2 INORGANIC SYNTHESIS Directed Inorganic and Organometallic Synthesis Making of Inorganic Materials by Electrochemical Methods Ionic Liquids in Material Synthesis: Functional Nanoparticles and Other Inorganic Nanostructures POLYMER SYNTHESIS IN IONIC LIQUIDS BIOCATALYTIC REACTIONS IN IONIC LIQUIDS INDUSTRIAL APPLICATIONS OF IONIC LIQUIDS CONLUDING REMARKS AND OUTLOOK

3,423 citations

Journal ArticleDOI
TL;DR: The theory of the potentiostatic current transient for three-dimensional multiple nucleation with diffusion controlled growth is discussed in this paper, where the termination of the nucleation process by the expansion of diffusion fields is considered, as well as deviations from randomness observed in the distribution of nuclei on the electrode surface.

1,629 citations

BookDOI
12 Apr 1990
TL;DR: In this paper, Fleig et al. discuss nonlinear dynamics in electrochemical systems, Katharina Krischer the electrochemistry of diamond, Yuri V. Pleskov passivity of metals, Hans-Henning Strehblow.
Abstract: Microelectrodes in solid-state ionics, Jurgen Fleig nonlinear dynamics in electrochemical systems, Katharina Krischer the electrochemistry of diamond, Yuri V. Pleskov passivity of metals, Hans-Henning Strehblow.

1,108 citations

Journal ArticleDOI
TL;DR: An examination of the pertinent properties of ionic liquids is presented, followed by an assessment of their application to date across the various electrochemical disciplines, concluding with an outlook viewing current problems and directions.
Abstract: Some twenty-five years after they first came to prominence as alternative electrochemical solvents, room temperature ionic liquids (RTILs) are currently being employed across an increasingly wide range of chemical fields. This review examines the current state of ionic liquid-based electrochemistry, with particular focus on the work of the last decade. Being composed entirely of ions and possessing wide electrochemical windows (often in excess of 5 volts), it is not difficult to see why these compounds are seen by electrochemists as attractive potential solvents. Accordingly, an examination of the pertinent properties of ionic liquids is presented, followed by an assessment of their application to date across the various electrochemical disciplines, concluding with an outlook viewing current problems and directions.

1,099 citations