scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrodeposition of Ni-Co-Fe mixed sulfide ultrathin nanosheets on Ni nanocones: a low-cost, durable and high performance catalyst for electrochemical water splitting.

12 Sep 2019-Nanoscale (The Royal Society of Chemistry)-Vol. 11, Iss: 35, pp 16621-16634
TL;DR: This study introduces a simple, efficient, reasonable and cost-effective method of creating an effective catalyst for the overall water splitting process by directly depositing on the surface of the nanocones using the CV method.
Abstract: The development of a bi-functional active and stable catalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an important challenge in overall electrochemical water splitting. In this study, firstly, nickel nanocones (NNCs) were formed using electrochemical deposition, and then Ni–Co–Fe based mixed sulfide ultrathin nanosheets were obtained by directly depositing on the surface of the nanocones using the CV method. With a hierarchical structure of Ni–Fe–Co–S nanosheets, not only was a high active surface area created, but also the electron transfer and mass transfer were enhanced. This structure also led to the faster release of hydrogen bubbles from the surface. An overpotential value of 106 mV was required on the surface of this electrode to generate a current density of 10 mA cm−2 in the HER, whereas, for the OER, 207 mV overpotential was needed to generate a current density of 10 mA cm−2. Furthermore, this electrode required 1.54 V potential to generate a current density of 10 mA cm−2 in the total electrochemical water splitting. The resulting electrode also exhibited reasonable electrocatalytic stability, and after 10 hours of electrolysis in the overall water splitting reaction, the voltage change was negligible. This study introduces a simple, efficient, reasonable and cost-effective method of creating an effective catalyst for the overall water splitting process.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis.
Abstract: Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis.

224 citations

Journal ArticleDOI
Zhenhua Yan1, Huanhuan Liu1, Zhimeng Hao1, Meng Yu1, Xiang Chen1, Jun Chen1 
TL;DR: This review focuses on the recent electrodeposition strategies for metal (hydro)oxide design and water oxidation applications and the unique properties and underlying principles of electrodeposited metal (Hydro)oxides in the OER.
Abstract: Electrochemical water splitting is a promising technology for hydrogen production and sustainable energy conversion, but the electrolyzers that are currently available do not have anodic electrodes that are robust enough and highly active for the oxygen evolution reaction (OER). Electrodeposition provides a feasible route for preparing freestanding OER electrodes with high active site utilization, fast mass transport and a simple fabrication process, which is highly attractive from both academic and commercial points of view. This minireview focuses on the recent electrodeposition strategies for metal (hydro)oxide design and water oxidation applications. First, the intrinsic advantages of electrodeposition in comparison with traditional technologies are introduced. Then, the unique properties and underlying principles of electrodeposited metal (hydro)oxides in the OER are unveiled. In parallel, illustrative examples of the latest advances in materials structural design, controllable synthesis, and mechanism understanding through the electrochemical synthesis of (hydro)oxides are presented. Finally, the latest representative OER mechanism and electrodeposition routes for OER catalysts are briefly overviewed. Such observations provide new insights into freestanding (hydro)oxides electrodes prepared via electrodeposition, which show significant practical application potential in water splitting devices. We hope that this review will provide inspiration for researchers and stimulate the development of water splitting technology.

84 citations

Journal ArticleDOI
TL;DR: In this article, a non-noble Ni-Mo-P ternary alloy was coated on Ni foam through an in-situ, one-step electrodeposition approach under different experimental conditions.

77 citations

Journal ArticleDOI
TL;DR: This study proposes a binder-free and economical technique for the synthesis of three-dimensional electrocatalysts on nickel nanostructures under various applied frequencies and duration times, using the pulse electrodeposition method as a versatile and cost-effective approach.
Abstract: Development and fabrication of electrodes with favorable electrocatalytic activity, low-cost, and excellent electrocatalytic durability are one of the most important issues in the hydrogen producti...

71 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed effective, stable, and economical electrocatalysts to achieve highly efficient overall water splitting under a large current density in industries for renewable H2 production.
Abstract: Developing effective, stable, and economical electrocatalysts to achieve highly efficient overall water splitting under a large current density in industries is critical for renewable H2 production...

53 citations

References
More filters
Journal ArticleDOI
09 Dec 2011-Science
TL;DR: The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an eg symmetry of surface transition metal cations in an oxide.
Abstract: The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3–δ (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e g symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e g occupancy close to unity, with high covalency of transition metal–oxygen bonds.

3,876 citations

Journal ArticleDOI
TL;DR: This study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.
Abstract: The activities of the oxygen evolution reaction (OER) on iridium-oxide- and ruthenium-oxide-based catalysts are among the highest known to date. However, the OER activities of thermodynamically stable rutile iridium oxide (r-IrO2) and rutile iridium oxide (r-RuO2), normalized to catalyst mass or true surface area are not well-defined. Here we report a synthesis of r-IrO2 and r-RuO2 nanoparticles (NPs) of ∼6 nm, and examine their OER activities in acid and alkaline solutions. Both r-IrO2 and r-RuO2 NPs were highly active for OER, with r-RuO2 exhibiting up to 10 A/goxide at 1.48 V versus reversible hydrogen electrode. When comparing the two, r-RuO2 NPs were found to have slightly higher intrinsic and mass OER activities than r-IrO2 in both acid and basic solutions. Interestingly, these oxide NPs showed higher stability under OER conditions than commercial Ru/C and Ir/C catalysts. Our study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrol...

2,762 citations

Journal ArticleDOI
TL;DR: The topotactic fabrication of self-supported nanoporous cobalt phosphide nanowire arrays on carbon cloth via low-temperature phosphidation of the corresponding Co(OH)F/CC precursor offers excellent catalytic performance and durability under neutral and basic conditions.
Abstract: In this Communication, we report the topotactic fabrication of self-supported nanoporous cobalt phosphide nanowire arrays on carbon cloth (CoP/CC) via low-temperature phosphidation of the corresponding Co(OH)F/CC precursor. The CoP/CC, as a robust integrated 3D hydrogen-evolving cathode, shows a low onset overpotential of 38 mV and a small Tafel slope of 51 mV dec–1, and it maintains its catalytic activity for at least 80 000 s in acidic media. It needs overpotentials (η) of 67, 100, and 204 mV to attain current densities of 10, 20, and 100 mA cm–2, respectively. Additionally, this electrode offers excellent catalytic performance and durability under neutral and basic conditions.

2,063 citations

Journal ArticleDOI
TL;DR: In this paper, a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C catalysts, is presented.
Abstract: Oxygen electrocatalysis is of great importance for many energy storage and conversion technologies, including fuel cells, metal–air batteries and water electrolysis. Replacing noble metal-based electrocatalysts with highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts is critical for the practical applications of these technologies. Here we report a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal–organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C electrocatalysts. The remarkable electrochemical properties are mainly attributed to the synergistic effect from chemical compositions and the robust hollow structure composed of interconnected crystalline nitrogen-doped carbon nanotubes. The presented strategy for controlled design and synthesis of metal–organic framework-derived functional nanomaterials offers prospects in developing highly active electrocatalysts in electrochemical energy devices. Precious metals are efficient oxygen electrocatalysts but suffer from poor stability and high cost. Now, nitrogen-doped carbon nanotubes derived from metal–organic frameworks are shown to have activity and durability comparable to that of Pt/C catalysts.

1,885 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Abstract: Increasing demand for finding eco-friendly and everlasting energy sources is now totally depending on fuel cell technology. Though it is an eco-friendly way of producing energy for the urgent requirements, it needs to be improved to make it cheaper and more eco-friendly. Although there are several types of fuel cells, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct. However, supplying fuels in the purest form (at least the H2) is essential to ensure higher life cycles and less decay in cell efficiency. The current large-scale H2 production is largely dependent on steam reforming of fossil fuels, which generates CO2 along with H2 and the source of which is going to be depleted. As an alternate, electrolysis of water has been given greater attention than the steam reforming. The reasons are as follows: the very high purity of the H2 produced, the abundant source, no need for high-temperature, high-pressure reactors, and so on. In earlier days,...

1,757 citations