scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electrolyte decomposition and gas evolution in a lithium-sulfur cell upon long-term cycling

About: This article is published in Electrochimica Acta.The article was published on 2017-07-20. It has received 31 citations till now. The article focuses on the topics: Electrolyte & Dimethoxyethane.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the typical applications of computational chemistry in Li-S battery studies, correlating to characterization techniques, such as X-ray diffraction, infra-red & Raman spectra, X -ray absorption spectroscopy, binding energy, and nuclear magnetic resonance, are reviewed.

367 citations

Journal ArticleDOI
TL;DR: Lithium-sulfur batteries are considered a possible next-generation energy storage solution, but their commercial viability is still in question because of several technical challenges, including th... as mentioned in this paper.
Abstract: Lithium–sulfur batteries are considered a possible next-generation energy-storage solution, but their commercial viability is still in question because of several technical challenges, including th...

107 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the reaction processes and their correlation to cell cycling behavior and failure mechanisms, and find that catastrophic failure of high-energy Li-sulfur (Li-S) pouch cells results from uneven sulfur/polysulfide reactions and electrolyte depletion for the first tens of cycles.
Abstract: The lithium–sulfur (Li–S) battery is a promising next-generation energy storage technology because of its high theoretical energy and low cost. Extensive research efforts have been made on new materials and advanced characterization techniques for mechanistic studies. However, it is uncertain how discoveries made on the material level apply to realistic batteries due to limited analysis and characterization of real high-energy cells, such as pouch cells. Evaluation of pouch cells (>1 A h) (instead of coin cells) that are scalable to practical cells provides a critical understanding of current limitations which enables the proposal of strategies and solutions for further performance improvement. Herein, we design and fabricate pouch cells over 300 W h kg−1, compare the cell parameters required for high-energy pouch cells, and investigate the reaction processes and their correlation to cell cycling behavior and failure mechanisms. Spatially resolved characterization techniques and fluid-flow simulation reveal the impacts of the liquid electrolyte diffusion within the pouch cells. We found that catastrophic failure of high-energy Li–S pouch cells results from uneven sulfur/polysulfide reactions and electrolyte depletion for the first tens of cycles, rather than sulfur dissolution as commonly reported in the literature. The uneven reaction stems from limited electrolyte diffusion through the porous channels into the central part of thick cathodes during cycling, which is amplified both across the sulfur electrodes and within the same electrode plane. A combination of strategies is suggested to increase sulfur utilization, improve nanoarchitectures for electrolyte diffusion and reduce consumption of the electrolytes and additives.

100 citations

Journal ArticleDOI
TL;DR: In this paper, the main advances in this field since the first attempts in the mid 1970s are reviewed, including specific applications in all-solid-state (inorganic and polymeric), Li-Sulfur (Li-S) and Lithium-O2 (air) batteries.

85 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Abstract: The Li-S battery has been under intense scrutiny for over two decades, as it offers the possibility of high gravimetric capacities and theoretical energy densities ranging up to a factor of five beyond conventional Li-ion systems. Herein, we report the feasibility to approach such capacities by creating highly ordered interwoven composites. The conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur. The structure provides access to Li+ ingress/egress for reactivity with the sulphur, and we speculate that the kinetic inhibition to diffusion within the framework and the sorption properties of the carbon aid in trapping the polysulphides formed during redox. Polymer modification of the carbon surface further provides a chemical gradient that retards diffusion of these large anions out of the electrode, thus facilitating more complete reaction. Reversible capacities up to 1,320 mA h g(-1) are attained. The assembly process is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials.

5,151 citations

Journal ArticleDOI
TL;DR: This review aims to summarize major developments in the field of lithium-sulfur batteries, starting from an overview of their electrochemistry, technical challenges and potential solutions, along with some theoretical calculation results to advance the understanding of the material interactions involved.
Abstract: Due to their high energy density and low material cost, lithium–sulfur batteries represent a promising energy storage system for a multitude of emerging applications, ranging from stationary grid storage to mobile electric vehicles. This review aims to summarize major developments in the field of lithium–sulfur batteries, starting from an overview of their electrochemistry, technical challenges and potential solutions, along with some theoretical calculation results to advance our understanding of the material interactions involved. Next, we examine the most extensively-used design strategy: encapsulation of sulfur cathodes in carbon host materials. Other emerging host materials, such as polymeric and inorganic materials, are discussed as well. This is followed by a survey of novel battery configurations, including the use of lithium sulfide cathodes and lithium polysulfide catholytes, as well as recent burgeoning efforts in the modification of separators and protection of lithium metal anodes. Finally, we conclude with an outlook section to offer some insight on the future directions and prospects of lithium–sulfur batteries.

1,816 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report a quantitative analysis of the shuttle phenomenon in Li/S rechargeable batteries and present experimental evidence that selfdischarge, charge-discharge efficiency, charge profile, and overcharge protection are all facets of the same phenomenon.
Abstract: This work reports a quantitative analysis of the shuttle phenomenon in Li/S rechargeable batteries. The work encompasses theoretical models of the charge process, charge and discharge capacity, overcharge protection, thermal effects, self-discharge, and a comparison of simulated and experimental data. The work focused on the features of polysulfide chemistry and polysulfide interaction with the Li anode, a quantitative description of these phenomena, and their application to the development of a high-energy rechargeable battery. The objective is to present experimental evidence that self-discharge, charge-discharge efficiency, charge profile, and overcharge protection are all facets of the same phenomenon.

1,793 citations

Journal ArticleDOI
TL;DR: Li-S batteries have received everincreasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions as discussed by the authors.
Abstract: Rechargeable Li–S batteries have received ever-increasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions. Li–S batteries may represent a next-generation energy storage system, particularly for large scale applications. The obstacles to realize this high energy density mainly include high internal resistance, self-discharge and rapid capacity fading on cycling. These challenges can be met to a large degree by designing novel sulfur electrodes with “smart” nanostructures. This highlight provides an overview of major developments of positive electrodes based on this concept.

1,731 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition.
Abstract: Lithium dendrite growth is a serious hazard in battery operations. Here, the authors show that when using lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, a stable and uniform solid electrolyte interphase forms on the lithium surface, which prevents dendrite growth.

1,214 citations