scispace - formally typeset
Journal ArticleDOI

Electromagnetic fields around silver nanoparticles and dimers.

Encai Hao, +1 more
- 01 Jan 2004 - 
- Vol. 120, Iss: 1, pp 357-366
Reads0
Chats0
TLDR
The discrete dipole approximation is used to investigate the electromagnetic fields induced by optical excitation of localized surface plasmon resonances of silver nanoparticles, including monomers and dimers, with emphasis on what size, shape, and arrangement leads to the largest local electric field (E-field) enhancement near the particle surfaces.
Abstract
We use the discrete dipole approximation to investigate the electromagnetic fields induced by optical excitation of localized surface plasmon resonances of silver nanoparticles, including monomers and dimers, with emphasis on what size, shape, and arrangement leads to the largest local electric field (E-field) enhancement near the particle surfaces. The results are used to determine what conditions are most favorable for producing enhancements large enough to observe single molecule surface enhanced Raman spectroscopy. Most of the calculations refer to triangular prisms, which exhibit distinct dipole and quadrupole resonances that can easily be controlled by varying particle size. In addition, for the dimer calculations we study the influence of dimer separation and orientation, especially for dimers that are separated by a few nanometers. We find that the largest /E/2 values for dimers are about a factor of 10 larger than those for all the monomers examined. For all particles and particle orientations, the plasmon resonances which lead to the largest E-fields are those with the longest wavelength dipolar excitation. The spacing of the particles in the dimer plays a crucial role, and we find that the spacing needed to achieve a given /E/2 is proportional to nanoparticle size for particles below 100 nm in size. Particle shape and curvature are of lesser importance, with a head to tail configuration of two triangles giving enhanced fields comparable to head to head, or rounded head to tail. The largest /E/2 values we have calculated for spacings of 2 nm or more is approximately 10(5).

read more

Citations
More filters
Journal ArticleDOI

Controlling the synthesis and assembly of silver nanostructures for plasmonic applications

TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Journal ArticleDOI

Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures

TL;DR: In this article, the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices.
Journal ArticleDOI

Present and Future of Surface-Enhanced Raman Scattering

Judith Langer, +64 more
- 28 Jan 2020 - 
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Journal ArticleDOI

Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications

TL;DR: Of all the possible nanoparticle shapes, gold nanorods are especially intriguing as they offer strong plasmonic fields while exhibiting excellent tunability and biocompatibility, according to a review of their radiative and nonradiative properties.
References
More filters
Book

Handbook of Optical Constants of Solids

TL;DR: In this paper, E.D. Palik and R.R. Potter, Basic Parameters for Measuring Optical Properties, and W.W.Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region.
Book

Absorption and Scattering of Light by Small Particles

TL;DR: In this paper, a Potpourri of Particles is used to describe surface modes in small Particles and the Angular Dependence of Scattering is shown to be a function of the size of the particles.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Related Papers (5)