scispace - formally typeset
Search or ask a question
Book

Electron Energy-Loss Spectroscopy in the Electron Microscope

TL;DR: In this article, the authors present an overview of the basic principles of energy-loss spectroscopy, including the use of the Wien filter, and the analysis of the inner-shell of the detector.
Abstract: 1. An Introduction to Electron Energy-Loss Spectroscopy.- 1.1 Interaction of Fast Electrons with a Solid.- 1.2. The Electron Energy-Loss Spectrum.- 1.3. The Development of Experimental Techniques.- 1.4. Comparison of Analytical Methods.- 1.4.1. Ion-Beam Methods.- 1.4.2. Incident Photons.- 1.4.3. Electron-Beam Techniques.- 1.5. Further Reading.- 2. Instrumentation for Energy-Loss Spectroscopy.- 2.1. Energy-Analyzing and Energy-Selecting Systems.- 2.1.1. The Magnetic-Prism Spectrometer.- 2.1.2. Energy-Selecting Magnetic-Prism Devices.- 2.1.3. The Wien Filter.- 2.1.4. Cylindrical-Lens Analyzers.- 2.1.5. Retarding-Field Analyzers.- 2.1.6. Electron Monochromators.- 2.2. The Magnetic-Prism Spectrometer.- 2.2.1. First-Order Properties.- 2.2.2. Higher-Order Focusing.- 2.2.3. Design of an Aberration-Corrected Spectrometer.- 2.2.4. Practical Considerations.- 2.2.5. Alignment and Adjustment of the Spectrometer.- 2.3. The Use of Prespectrometer Lenses.- 2.3.1. Basic Principles.- 2.3.2. CTEM with Projector Lens On.- 2.3.3. CTEM with Projector Lens Off.- 2.3.4. Spectrometer-Specimen Coupling in a High-Resolution STEM.- 2.4. Recording the Energy-Loss Spectrum.- 2.4.1. Serial Acquisition.- 2.4.2. Electron Detectors for Serial Recording.- 2.4.3. Scanning the Energy-Loss Spectrum.- 2.4.4. Signal Processing and Storage.- 2.4.5. Noise Performance of a Serial Detector.- 2.4.6. Parallel-Recording Detectors.- 2.4.7. Direct Exposure of a Diode-Array Detector.- 2.4.8. Indirect Exposure of a Diode Array.- 2.4.9. Removal of Diode-Array Artifacts.- 2.5. Energy-Filtered Imaging.- 2.5.1. Elemental Mapping.- 2.5.2. Z-Contrast Imaging.- 3. Electron Scattering Theory.- 3.1. Elastic Scattering.- 3.1.1. General Formulas.- 3.1.2. Atomic Models.- 3.1.3. Diffraction Effects.- 3.1.4. Electron Channeling.- 3.1.5. Phonon Scattering.- 3.2. Inelastic Scattering.- 3.2.1. Atomic Models.- 3.2.2. Bethe Theory.- 3.2.3. Dielectric Formulation.- 3.2.4. Solid-State Effects.- 3.3. Excitation of Outer-Shell Electrons.- 3.3.1. Volume Plasmons.- 3.3.2. Single-Electron Excitation.- 3.3.3. Excitons.- 3.3.4. Radiation Losses.- 3.3.5. Surface Plasmons.- 3.3.6. Single, Plural, and Multiple Scattering.- 3.4. Inner-Shell Excitation.- 3.4.1. Generalized Oscillator Strength.- 3.4.2. Kinematics of Scattering.- 3.4.3. Ionization Cross Sections.- 3.5. The Spectral Background to Inner-Shell Edges.- 3.6. The Structure of Inner-Shell Edges.- 3.6.1. Basic Edge Shapes.- 3.6.2. Chemical Shifts in Threshold Energy.- 3.6.3. Near-Edge Fine Structure (ELNES).- 3.6.4. Extended Energy-Loss Fine Structure (EXELFS).- 4. Quantitative Analysis of the Energy-Loss Spectrum.- 4.1. Removal of Plural Scattering from the Low-Loss Region.- 4.1.1. Fourier-Log Deconvolution.- 4.1.2. Approximate Methods.- 4.1.3. Angular-Dependent Deconvolution.- 4.2. Kramers-Kronig Analysis.- 4.3. Removal of Plural Scattering from Inner-Shell Edges.- 4.3.1. Fourier-Log Deconvolution.- 4.3.2. Fourier-Ratio Method.- 4.3.3. Van Cittert'1. An Introduction to Electron Energy-Loss Spectroscopy.- 1.1 Interaction of Fast Electrons with a Solid.- 1.2. The Electron Energy-Loss Spectrum.- 1.3. The Development of Experimental Techniques.- 1.4. Comparison of Analytical Methods.- 1.4.1. Ion-Beam Methods.- 1.4.2. Incident Photons.- 1.4.3. Electron-Beam Techniques.- 1.5. Further Reading.- 2. Instrumentation for Energy-Loss Spectroscopy.- 2.1. Energy-Analyzing and Energy-Selecting Systems.- 2.1.1. The Magnetic-Prism Spectrometer.- 2.1.2. Energy-Selecting Magnetic-Prism Devices.- 2.1.3. The Wien Filter.- 2.1.4. Cylindrical-Lens Analyzers.- 2.1.5. Retarding-Field Analyzers.- 2.1.6. Electron Monochromators.- 2.2. The Magnetic-Prism Spectrometer.- 2.2.1. First-Order Properties.- 2.2.2. Higher-Order Focusing.- 2.2.3. Design of an Aberration-Corrected Spectrometer.- 2.2.4. Practical Considerations.- 2.2.5. Alignment and Adjustment of the Spectrometer.- 2.3. The Use of Prespectrometer Lenses.- 2.3.1. Basic Principles.- 2.3.2. CTEM with Projector Lens On.- 2.3.3. CTEM with Projector Lens Off.- 2.3.4. Spectrometer-Specimen Coupling in a High-Resolution STEM.- 2.4. Recording the Energy-Loss Spectrum.- 2.4.1. Serial Acquisition.- 2.4.2. Electron Detectors for Serial Recording.- 2.4.3. Scanning the Energy-Loss Spectrum.- 2.4.4. Signal Processing and Storage.- 2.4.5. Noise Performance of a Serial Detector.- 2.4.6. Parallel-Recording Detectors.- 2.4.7. Direct Exposure of a Diode-Array Detector.- 2.4.8. Indirect Exposure of a Diode Array.- 2.4.9. Removal of Diode-Array Artifacts.- 2.5. Energy-Filtered Imaging.- 2.5.1. Elemental Mapping.- 2.5.2. Z-Contrast Imaging.- 3. Electron Scattering Theory.- 3.1. Elastic Scattering.- 3.1.1. General Formulas.- 3.1.2. Atomic Models.- 3.1.3. Diffraction Effects.- 3.1.4. Electron Channeling.- 3.1.5. Phonon Scattering.- 3.2. Inelastic Scattering.- 3.2.1. Atomic Models.- 3.2.2. Bethe Theory.- 3.2.3. Dielectric Formulation.- 3.2.4. Solid-State Effects.- 3.3. Excitation of Outer-Shell Electrons.- 3.3.1. Volume Plasmons.- 3.3.2. Single-Electron Excitation.- 3.3.3. Excitons.- 3.3.4. Radiation Losses.- 3.3.5. Surface Plasmons.- 3.3.6. Single, Plural, and Multiple Scattering.- 3.4. Inner-Shell Excitation.- 3.4.1. Generalized Oscillator Strength.- 3.4.2. Kinematics of Scattering.- 3.4.3. Ionization Cross Sections.- 3.5. The Spectral Background to Inner-Shell Edges.- 3.6. The Structure of Inner-Shell Edges.- 3.6.1. Basic Edge Shapes.- 3.6.2. Chemical Shifts in Threshold Energy.- 3.6.3. Near-Edge Fine Structure (ELNES).- 3.6.4. Extended Energy-Loss Fine Structure (EXELFS).- 4. Quantitative Analysis of the Energy-Loss Spectrum.- 4.1. Removal of Plural Scattering from the Low-Loss Region.- 4.1.1. Fourier-Log Deconvolution.- 4.1.2. Approximate Methods.- 4.1.3. Angular-Dependent Deconvolution.- 4.2. Kramers-Kronig Analysis.- 4.3. Removal of Plural Scattering from Inner-Shell Edges.- 4.3.1. Fourier-Log Deconvolution.- 4.3.2. Fourier-Ratio Method.- 4.3.3. Van Cittert's Method.- 4.3.4. Effect of a Collection Aperture.- 4.4. Background Fitting to Ionization Edges.- 4.4.1. Energy Dependence of the Background.- 4.4.2. Background-Fitting Procedures.- 4.4.3. Background-Subtraction Errors.- 4.5. Elemental Analysis Using Inner-Shell Edges.- 4.5.1. Basic Formulas.- 4.5.2. Correction for Incident-Beam Convergence.- 4.5.3. Effect of Sample Orientation.- 4.5.4. Effect of Specimen Thickness.- 4.5.5. Choice of Collection Angle.- 4.5.6. Choice of Integration and Fitting Regions.- 4.5.7. Microanalysis Software.- 4.5.8. Calculation of Partial Cross Sections.- 4.6. Analysis of Extended Energy-Loss Fine Structure.- 4.6.1. Spectrum Acquisition.- 4.6.2. Fourier-Transform Method of Data Analysis.- 4.6.3. Curve-Fitting Procedure.- 5. Applications of Energy-Loss Spectroscopy.- 5.1. Measurement of Specimen Thickness.- 5.1.1. Measurement of Absolute Thickness.- 5.1.2. Sum-Rule Methods.- 5.2. Low-Loss Spectroscopy.- 5.2.1. Phase Identification.- 5.2.2. Measurement of Alloy Composition.- 5.2.3. Detection of Hydrogen and Helium.- 5.2.4. Zero-Loss Images.- 5.2.5. Z-contrast Images.- 5.2.6. Plasmon-Loss Images.- 5.3. Core-Loss Microanalysis.- 5.3.1. Choice of Specimen Thickness and Incident Energy.- 5.3.2. Specimen Preparation.- 5.3.3. Elemental Detection and Mapping.- 5.3.4. Quantitative Microanalysis.- 5.3.5. Measurement and Control of Radiation Damage.- 5.4. Spatial Resolution and Elemental Detection Limits.- 5.4.1. Electron-Optical Considerations.- 5.4.2. Loss of Resolution due to Electron Scattering.- 5.4.3. Statistical Limitations.- 5.4.4. Localization of Inelastic Scattering.- 5.5. Structural Information from EELS.- 5.5.1. Low-Loss Fine Structure.- 5.5.2. Orientation Dependence of Core-Loss Edges.- 5.5.3. Core-Loss Diffraction Patterns.- 5.5.4. Near-Edge Fine Structure.- 5.5.5. Extended Fine Structure.- 5.5.6. Electron-Compton Measurements.- Appendix A. Relativistic Bethe Theory.- Appendix B. FORTRAN Programs.- B.3. Incident-Convergence Correction.- B.4. Fourier-Log Deconvolution.- B.5. Kramers-Kronig Transformation.- Appendix C. Plasmon Energies of Some Elements and Compounds.- Appendix D. Inner-Shell Binding Energies and Edge Shapes.- Appendix E. Electron Wavelengths and Relativistic Factors Fundamental Constants.- References.
Citations
More filters
Journal ArticleDOI
24 Jun 2011-Science
TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Abstract: Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

5,486 citations


Additional excerpts

  • ...5 intensity in the low-loss region) (5)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the fundamentals of TEM and its applications in structural determination of shape-controlled nanocrystals and their assemblies, and demonstrate in situ TEM for characterizing and measuring the thermodynamic, electric, and mechanical properties of individual nanostructures, from which the structure−property relationship can be registered with a specific nanoparticle/structure.
Abstract: The physical and chemical properties of nanophase materials rely on their crystal and surface structures. Transmission electron microscopy (TEM) is a powerful and unique technique for structure characterization. The most important application of TEM is the atomic-resolution real-space imaging of nanoparticles. This article introduces the fundamentals of TEM and its applications in structural determination of shape-controlled nanocrystals and their assemblies. By forming a nanometer size electron probe, TEM is unique in identifying and quantifying the chemical and electronic structure of individual nanocrystals. Electron energy-loss spectroscopy analysis of the solid-state effects and mapping the valence states are even more attractive. In situ TEM is demonstrated for characterizing and measuring the thermodynamic, electric, and mechanical properties of individual nanostructures, from which the structure−property relationship can be registered with a specific nanoparticle/structure.

1,980 citations

Journal ArticleDOI
TL;DR: The first observations of ferromagnetism above room temperature for dilute (<4 at%) Mn-doped ZnO semiconductors are reported, promising new spintronic devices as well as magneto-optic components.
Abstract: The search for ferromagnetism above room temperature in dilute magnetic semiconductors has been intense in recent years. We report the first observations of ferromagnetism above room temperature for dilute ( 700 °C) methods were used, samples were found to exhibit clustering and were not ferromagnetic at room temperature. This capability to fabricate ferromagnetic Mn-doped ZnO semiconductors promises new spintronic devices as well as magneto-optic components.

1,652 citations


Cites methods from "Electron Energy-Loss Spectroscopy i..."

  • ...The core-loss spectra were used to obtain the Mn valence stat...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a review of porosity in on-chip wires can be found, with an attempt to give an overview of the classification, the character, and the characteristics of the porosity.
Abstract: The ever increasing requirements for electrical performance of on-chip wiring has driven three major technological advances in recent years. First, copper has replaced Aluminum as the new interconnect metal of choice, forcing also the introduction of damascene processing. Second, alternatives for SiO2 with a lower dielectric constant are being developed and introduced in main stream processing. The many new resulting materials needs to be classified in terms of their materials characteristics, evaluated in terms of their properties, and tested for process compatibility. Third, in an attempt to lower the dielectric constant even more, porosity is being introduced into these new materials. The study of processes such as plasma interactions and swelling in liquid media now becomes critical. Furthermore, pore sealing and the deposition of a thin continuous copper diffusion barrier on a porous dielectric are of prime importance. This review is an attempt to give an overview of the classification, the character...

1,496 citations

Journal ArticleDOI
TL;DR: The formation of SkX close to room temperature in thin-films of the helimagnet FeGe with magnetic chirality inversion of the SkX across lattice twin boundaries will pave a new path to designing quantum-effect devices based on the controllable skyrmion dynamics.
Abstract: Skyrmions are vortex-like arrangements of spin magnetic moments, which so far have been observed in only a few compounds, and only at low temperatures. The discovery that skyrmions can be stabilized by thin magnetic films close to room temperature promises their use in spintronic devices.

1,369 citations


Cites methods from "Electron Energy-Loss Spectroscopy i..."

  • ...Figure 3 a shows the thickness profile of the wedge obtained by electron energy loss spectroscop...

    [...]