scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers

01 Apr 1992-Journal of the American Chemical Society (American Chemical Society)-Vol. 114, Iss: 9, pp 3173-3181
TL;DR: In this paper, mixed monolayers can be formed when the electroactive thiols are co-adsorbed with alkanethiols and ω-mercaptoalkanecarboxylic acids.
Abstract: Thiols with pendant redox centers (HS(CH 2 ) n CONHCH 2 pyRu(NH 3 ) 5 2+ , n=10, 11, 15) adsorb from acetonitrile solutions onto gold electrodes to form electroactive monolayers. Mixed monolayers can be formed when the electroactive thiols are co-adsorbed with alkanethiols (HS(CH 2 ) n CH 3 , n=11, 15) and ω-mercaptoalkanecarboxylic acids (HS(CH 2 ) n COOH, n=10, 11, 15); the diluent thiol in each case is slightly shorter than the electroactive thiol
Citations
More filters
Journal ArticleDOI
TL;DR: Monolayers of alkanethiolates on gold are probably the most studied SAMs to date and offer the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies.
Abstract: The field of self-assembled monolayers (SAMs) has witnessed tremendous growth in synthetic sophistication and depth of characterization over the past 15 years.1 However, it is interesting to comment on the modest beginning and on important milestones. The field really began much earlier than is now recognized. In 1946 Zisman published the preparation of a monomolecular layer by adsorption (self-assembly) of a surfactant onto a clean metal surface.2 At that time, the potential of self-assembly was not recognized, and this publication initiated only a limited level of interest. Early work initiated in Kuhn’s laboratory at Gottingen, applying many years of experience in using chlorosilane derivative to hydrophobize glass, was followed by the more recent discovery, when Nuzzo and Allara showed that SAMs of alkanethiolates on gold can be prepared by adsorption of di-n-alkyl disulfides from dilute solutions.3 Getting away from the moisture-sensitive alkyl trichlorosilanes, as well as working with crystalline gold surfaces, were two important reasons for the success of these SAMs. Many self-assembly systems have since been investigated, but monolayers of alkanethiolates on gold are probably the most studied SAMs to date. The formation of monolayers by self-assembly of surfactant molecules at surfaces is one example of the general phenomena of self-assembly. In nature, self-assembly results in supermolecular hierarchical organizations of interlocking components that provides very complex systems.4 SAMs offer unique opportunities to increase fundamental understanding of self-organization, structure-property relationships, and interfacial phenomena. The ability to tailor both head and tail groups of the constituent molecules makes SAMs excellent systems for a more fundamental understanding of phenomena affected by competing intermolecular, molecular-substrates and molecule-solvent interactions like ordering and growth, wetting, adhesion, lubrication, and corrosion. That SAMs are well-defined and accessible makes them good model systems for studies of physical chemistry and statistical physics in two dimensions, and the crossover to three dimensions. SAMs provide the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies. These studies may eventually produce the design capabilities needed for assemblies of three-dimensional structures.5 However, this will require studies of more complex systems and the combination of what has been learned from SAMs with macromolecular science. The exponential growth in SAM research is a demonstration of the changes chemistry as a disciAbraham Ulman was born in Haifa, Israel, in 1946. He studied chemistry in the Bar-Ilan University in Ramat-Gan, Israel, and received his B.Sc. in 1969. He received his M.Sc. in phosphorus chemistry from Bar-Ilan University in 1971. After a brief period in industry, he moved to the Weizmann Institute in Rehovot, Israel, and received his Ph.D. in 1978 for work on heterosubstituted porphyrins. He then spent two years at Northwestern University in Evanston, IL, where his main interest was onedimensional organic conductors. In 1985 he joined the Corporate Research Laboratories of Eastman Kodak Company, in Rochester, NY, where his research interests were molecular design of materials for nonlinear optics and self-assembled monolayers. In 1994 he moved to Polytechnic University where he is the Alstadt-Lord-Mark Professor of Chemistry. His interests encompass self-assembled monolayers, surface engineering, polymers at interface, and surfaces phenomena. 1533 Chem. Rev. 1996, 96, 1533−1554

7,465 citations

Journal ArticleDOI
TL;DR: The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface as mentioned in this paper.
Abstract: The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface.

928 citations

Journal ArticleDOI
TL;DR: In this article, various surface modification procedures were used on glassy carbon (GC) electrodes to yield surfaces with low oxide content or which lack specific oxide functional groups, and monolayers of several different adsorbates were formed on GC surfaces before electrochemical evaluation.
Abstract: Various well-established and novel surface modification procedures were used on glassy carbon (GC) electrodes to yield surfaces with low oxide content or which lack specific oxide functional groups. In addition, monolayers of several different adsorbates were formed on GC surfaces before electrochemical evaluation. Both the nonspecific monolayer adsorbates and reagents which chemisorb to specific functional groups were observed on the surface with Raman and photoelectron spectroscopy. The various GC surfaces were then evaluated for their electron transfer reactivity with nine redox systems in aqueous electrolyte, including Ru(NH3)62+/3+, Fe(CN6)3-/4-, ascorbic acid, and Feaq3+/2+. The nine systems were categorized according to their kinetic sensitivity to surface modification. Several, including Ru(NH3)62+/3+, are insensitive to surface modifications and are considered outer sphere. Feaq3+/2+, Vaq2+/3+, and Euaq2+/3+ are catalyzed by surface carbonyl groups and are very sensitive to the removal of surface...

669 citations

Journal ArticleDOI
TL;DR: This review regards the use of dynamic electrochemistry to study the mechanism of redox enzymes, with exclusive emphasis on the configuration where the protein is adsorbed onto an electrode and electron tranfer is direct.
Abstract: This review regards the use of dynamic electrochemistry to study the mechanism of redox enzymes, with exclusive emphasis on the configuration where the protein is adsorbed onto an electrode and electron tranfer is direct.

636 citations

Journal ArticleDOI
TL;DR: Using femtosecond mid-IR spectroscopy, a series of studies designed to understand how the interfacial electron transfer dynamics depends on the properties of the adsorbates, semiconductors, and their interaction are presented in this paper.
Abstract: Interfacial electron transfer (ET) between semiconductor nanomaterials and molecular adsorbates is an important fundamental process that is relevant to applications of these materials. Using femtosecond midinfrared spectroscopy, we have simultaneously measured the dynamics of injected electrons and adsorbates by directly monitoring the mid-IR absorption of electrons in the semiconductor and the change in adsorbate vibrational spectrum, respectively. We report on a series of studies designed to understand how the interfacial ET dynamics depends on the properties of the adsorbates, semiconductors, and their interaction. In Ru(dcbpy)2(SCN)2 (dcbpy = 2,2‘-bipyridine-4,4‘-dicarboxylate) sensitized TiO2 thin films, 400 nm excitation of the molecule promotes an electron to the metal-to-ligand charge transfer (MLCT) excited state, from which it is injected into TiO2. The injection process was characterized by a fast component, with a time constant of <100 fs, and a slower component that is sensitive to sample con...

607 citations