scispace - formally typeset
Journal ArticleDOI

Electronic stabilization of nucleophilic carbenes

Reads0
Chats0
TLDR
In this paper, the remarkable ability of the imidazole nucleus to stabilize a carbene center at the C-2 position is demonstrated by the isolation of 1,3,4,5-tetramethylimidazol-2-ylidene.
Abstract
Four new stable nucleophilic carbenes have been synthesized and structurally characterized. The remarkable ability of the imidazole nucleus to stabilize a carbene center at the C-2 position is demonstrated by the isolation of 1,3,4,5-tetramethylimidazol-2-ylidene. The isolation of three imidazol-2-ylidenes that bear aryl substituents is counter to speculations based on previous reports

read more

Citations
More filters
Journal ArticleDOI

Ionic Liquids-New "Solutions" for Transition Metal Catalysis.

TL;DR: There are indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity, which opens up a wide field for future investigations into this new class of solvents in catalytic applications.
Journal ArticleDOI

Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts

TL;DR: New, hydrophobic ionic liquids with low melting points (<−30 °C to ambient temperature) have been synthesized and investigated, based on 1,3-dialkyl imidazolium cations and hydrophilic anions and thus water-soluble.
Journal ArticleDOI

An overview of N-heterocyclic carbenes

TL;DR: A concise overview of N-heterocyclic carbenes in modern chemistry is provided, summarizing their general properties and uses and highlighting how these features are being exploited in a selection of pioneering recent studies.
Journal ArticleDOI

Heterocyclic Carbenes: Synthesis and Coordination Chemistry

TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Journal ArticleDOI

Organocatalysis by N-Heterocyclic Carbenes

TL;DR: The inversion of the classical reactivity (Umpolung) opens up new synthetic pathways in biochemical processes as nucleophilic acylations and in nature, the coenzyme thiamine (vitamin B1), a natural thiazolium salt, utilizes a catalytic variant of this concept in biochemical process as nucleophile acylation.
Related Papers (5)