scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Electronic structure and magnetism in half-Heusler compounds

17 Oct 2003-Journal of Physics: Condensed Matter (IOP Publishing)-Vol. 15, Iss: 43, pp 7307-7323
TL;DR: In this paper, the authors applied the full-potential linearized muffin tin orbital method and the tight-binding linearized MTL orbital method to investigate the electronic structure and magnetism of a series of half-Heusler compounds XMZ with X = Fe,Co,Ni, M = Ti,V,Nb,Zr,Cr,Mo,Mn and Z = Sb,Sn.
Abstract: In this paper we have applied the full-potential linearized muffin tin orbital method and the tight-binding linearized muffin tin orbital method to investigate in detail the electronic structure and magnetism of a series of half-Heusler compounds XMZ with X = Fe,Co,Ni, M = Ti,V,Nb,Zr,Cr,Mo,Mn and Z = Sb,Sn. Our detailed analysis of the electronic structure using various indicators of chemical bonding suggests that covalent hybridization of the higher-valent transition element X with the lower-valent transition element M is the key interaction responsible for the formation of the d–d gap in these systems. However, the presence of the sp-valent element is crucial to provide stability to these systems. The influence of the relative ordering of the atoms in the unit cell on the d–d gap is also investigated. We have also studied in detail some of these systems with more than 18 valence electrons which exhibit novel magnetic properties, namely half-metallic ferro- and ferrimagnetism. We show that the d–d gap in the paramagnetic state, the relatively large X–Sb hybridization and the large exchange splitting of the M atoms are responsible for the half-metallic property of some of these systems.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of new developments in theoretical and experimental electronic-structure investigations of half-metallic ferromagnets (HMFs) is presented in this article, where the effects of electron-magnon interaction in HMFs and their manifestations in magnetic, spectral, thermodynamic, and transport properties are considered.
Abstract: A review of new developments in theoretical and experimental electronic-structure investigations of half-metallic ferromagnets (HMFs) is presented. Being semiconductors for one spin projection and metals for another, these substances are promising magnetic materials for applications in spintronics (i.e., spin-dependent electronics). Classification of HMFs by the peculiarities of their electronic structure and chemical bonding is discussed. The effects of electron-magnon interaction in HMFs and their manifestations in magnetic, spectral, thermodynamic, and transport properties are considered. Special attention is paid to the appearance of nonquasiparticle states in the energy gap, which provide an instructive example of essentially many-body features in the electronic structure. State-of-the-art electronic calculations for correlated d-systems are discussed, and results for specific HMFs (Heusler alloys, zinc-blende structure compounds, CrO2, and Fe3O4) are reviewed.

748 citations


Cites methods from "Electronic structure and magnetism ..."

  • ...…the band structure of semi-Heusler alloys was given by using electronic structure calculations analysis (de Groot et al., 1983b), (Galanakis et al., 2002a; Galanakis and Mavropoulos, 2007; Kulatov and Mazin, 2003; Nanda and Dasgupta, 2003; Öğüt and Rabe, 1995); we briefly summarize the results....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the basic electronic and magnetic properties of NiMnSb and Co2MnGe half-metallic alloys, and show that the magnetic properties in these compounds are intrinsically related to the appearance of the minority-spin gap.
Abstract: Intermetallic Heusler alloys are amongst the most attractive half-metallic systems due to their high Curie temperatures and their structural similarity to binary semiconductors. In this review we present an overview of the basic electronic and magnetic properties of both Heusler families: the so-called half-Heusler alloys like NiMnSb and the full-Heusler alloys like Co2MnGe. Ab initio results suggest that both the electronic and magnetic properties in these compounds are intrinsically related to the appearance of the minority-spin gap. The total spin magnetic moment Mt scales linearly with the number of the valence electrons Zt, such that Mt = Zt − 24 for the full-Heusler and Mt = Zt − 18 for the half-Heusler alloys, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.

494 citations

Journal ArticleDOI
TL;DR: A theoretical evaluation of the thermoelectric-related electrical transport properties of 36 half-Heusler (HH) compounds, selected from more than 100 HHs, is carried out in this paper.
Abstract: A theoretical evaluation of the thermoelectric-related electrical transport properties of 36 half-Heusler (HH) compounds, selected from more than 100 HHs, is carried out in this paper. The electronic structures and electrical transport properties are studied using ab initio calculations and the Boltzmann transport equation under the constant relaxation time approximation for charge carriers. The electronic structure results predict the band gaps of these HH compounds, and show that many HHs are narrow-band-gap semiconductors and, therefore, are potentially good thermoelectric materials. The dependence of Seebeck coefficient, electrical conductivity, and power factor on the Fermi level is investigated. Maximum power factors and the corresponding optimal p- or n-type doping levels, related to the thermoelectric performance of materials, are calculated for all HH compounds investigated, which certainly provide guidance to experimental work. The estimated optimal doping levels and Seebeck coefficients show reasonable agreement with the measured results for some HH systems. A few HHs are recommended to be potentially good thermoelectric materials based on our calculations.

446 citations

Journal ArticleDOI
TL;DR: In this article, an enhancement in the dimensionless thermoelectric performance of an n-type half-Heusler material was reported using a nanocomposite approach.
Abstract: An enhancement in the dimensionless thermoelectric fi gure-of-merit ( ZT ) of an n-type half-Heusler material is reported using a nanocomposite approach. A peak ZT value of 1.0 was achieved at 600 ° C‐700 ° C, which is about 25% higher than the previously reported highest value. The samples were made by ball-milling ingots of composition Hf 0.75 Zr 0.25 NiSn 0.99 Sb 0.01 into nanopowders and hot-pressing the powders into dense bulk samples. The ingots were formed by arc-melting the elements. The ZT enhancement mainly comes from reduction of thermal conductivity due to increased phonon scattering at grain boundaries and crystal defects, and optimization of antimony doping.

302 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report a systematic examination of band gaps and the nature (covalent or ionic) of bonding in semiconducting 8 and 18-electron half-Heusler compounds through first-principles density functional calculations.
Abstract: Half-Heusler compounds XYZ, also called semi-Heusler compounds, crystallize in the C1b MgAgAs structure, in the space group . We report a systematic examination of band gaps and the nature (covalent or ionic) of bonding in semiconducting 8- and 18-electron half-Heusler compounds through first-principles density functional calculations. We find that the most appropriate description of these compounds from the viewpoint of electronic structures is one of a YZ zinc blende lattice stuffed by the X ion. Simple valence rules are obeyed for bonding in the 8-electron compound. For example, LiMgN can be written Li+ + (MgN)− and (MgN)−, which is isoelectronic with (SiSi), forms a zinc blende lattice. The 18-electron compounds can similarly be considered as obeying valence rules. A semiconductor such as TiCoSb can be written Ti4+ + (CoSb)4−; the latter unit is isoelectronic and isostructural with zinc-blende GaSb. For both the 8- and the 18-electron compounds, when X is fixed as some electropositive cation, the computed band gap varies approximately as the difference in Pauling electronegativities of Y and Z. What is particularly exciting is that this simple idea of a covalently bonded YZ lattice can also be extended to the very important magnetic half-Heusler phases; we describe these as valence compounds, i.e. possessing a band gap at the Fermi energy albeit only in one spin direction. The local moment in these magnetic compounds resides on the X site.

240 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
TL;DR: The band structure of Mn-based Heusler alloys of the crystal structure (MgAgAs type) has been calculated with the augmented-spherical-wave method.
Abstract: The band structure of Mn-based Heusler alloys of the $C{1}_{b}$ crystal structure (MgAgAs type) has been calculated with the augmented-spherical-wave method. Some of these magnetic compounds show unusual electronic properties. The majority-spin electrons are metallic, whereas the minority-spin electrons are semiconducting.

3,851 citations

Journal ArticleDOI
TL;DR: In this article, a spin dependent one-electron potential pertinent to ground state properties is obtained from calculations of the total energy per electron made with a 'bubble' (or random phase) type of dielectric function.
Abstract: The local density theory is developed by Hohenberg, Kohn and Sham is extended to the spin polarized case. A spin dependent one- electron potential pertinent to ground state properties is obtained from calculations of the total energy per electron made with a 'bubble' (or random phase) type of dielectric function. The potential is found to be well represented by an analytic expression corresponding to a shifted and rescaled spin dependent Slater potential. To test this potential the momentum dependent spin susceptibility of an electron gas is calculated. The results compare favourably with available information from other calculations and from experiment. The potential obtained in this paper should be useful for split band calculations of magnetic materials.

3,750 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived crystal orbital Hamilton populations (COHP) diagrams to visualize chemical bonding in solids by means of density-functional electronic structure calculations, where the band structure energy is defined as a sum of orbital pair contributions.
Abstract: After giving a concise overview of the current knowledge in the field of quantum mechanical bonding indicators for molecules and solids, we show how to obtain energy-resolved visualization of chemical bonding in solids by means of density-functional electronic structure calculations. On the basis of a band structure energy partitioning scheme, i.e., rewriting the band structure energy as a sum of orbital pair contributions, we derive what is to be defined as crystal orbital Hamilton populations (COHP). In particular, a COHP(E) diagram indicates bonding, nonbonding, and antibonding energy regions within a specified energy range while an energy integral of a COHP gives access to the contribution of an atom or a chemical bond to the distribution of one-particle energies

2,603 citations