scispace - formally typeset
Search or ask a question
Book ChapterDOI

Electroweak Phase Transition in the Early Universe

01 Jan 1998-Vol. 511, pp 211-240
TL;DR: In this paper, the existence and properties of the electroweak phase transition in the early universe depend strongly on the mass of the Higgs scalar MH and the observed baryon asymmetry in the universe therefore implies the necessity of an extension of the standard model.
Abstract: Existence and properties of the electroweak phase transition in the early universe depend strongly on the mass of the Higgs scalar MH. There is presumably no true symmetry restoration at high temperature. Nevertheless, a first order phase transition occurs in the standard model for M H ≲ GeV. For a realistic scalar mass M ≳ GeV the transition to the high temperature regime is described by a crossover, due to the strong electroweak gauge interactions for temperatures near and above the critical temperature. Electroweak baryogenesis during this transition seems not possible within the standard model. The observed baryon asymmetry in the universe therefore implies the necessity of an extension of the standard model.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors estimate the rate of anomalous electroweak baryon-number nonconserving processes in the cosmic plasma and find that it exceeds the expansion rate of the universe at T > ( a few ) × 10 2 GeV.

2,367 citations

Journal ArticleDOI
TL;DR: In this article, the authors estimate the rate of anomalous electroweak baryon-number nonconserving processes in the cosmic plasma and find that it exceeds the expansion rate of the universe at T > (a few) × 102 GeV.

2,079 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a topological classification of finite-energy, periodic fields and the classical solutions which minimize the action in each topological sector are examined and the effects of instantons can be reliably calculated at sufficiently high temperature.
Abstract: The current understanding of the behavior of quantum chromodynamics at finite temperature is presented. Perturbative methods are used to explore the high-temperature dynamics. At sufficiently high temperatures the plasma of thermal excitations screens all color electric fields and quarks are unconfined. It is believed that the high-temperature theory develops a dynamical mass gap. However in perturbation theory the infrared behavior of magnetic fluctuations is so singular that beyond some order the perturbative expansion breaks down. The topological classification of finite-energy, periodic fields is presented and the classical solutions which minimize the action in each topological sector are examined. These include periodic instantons and magnetic monopoles. At sufficiently high temperature only fields with integral topological charge can contribute to the functional integral. Electric screening completely suppresses the contribution of fields with nonintegral topological charge. Consequently the $\ensuremath{\theta}$ dependence of the free energy at high temperature is dominated by the contribution of instantons. The complete temperature dependence of the instanton density is explicitly computed and large-scale instantons are found to be suppressed. Therefore the effects of instantons may be reliably calculated at sufficiently high temperature. The behavior of the theory in the vicinity of the transition from the high-temperature quark phase to the low-temperature hadronic phase cannot be accurately computed. However, at least in the absence of light quarks, semiclassical techniques and lattice methods may be combined to yield a simple picture of the dynamics valid for both high and low temperature, and to estimate the transition temperature.

1,762 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the infrared cutoff of the massless Yang-Mills field due to high temperature effects cannot be greater than O( g 2 ) T, where g is the effective gauge coupling constant at a finite temperature.

656 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that there is no hot electroweak phase transition at large Higgs masses, mH = 95, 120 and 180 GeV, and that the line of first order phase transitions separating the symmetric and broken phases at small mH has an end point mH,c.
Abstract: We provide non-perturbative evidence for the fact that there is no hot electroweak phase transition at large Higgs masses, mH = 95, 120 and 180 GeV. This means that the line of first order phase transitions separating the symmetric and broken phases at small mH has an end point mH,c. In the minimal standard electroweak theory 70 GeV < mH,c < 95 GeV and most likely mH,c ≈ 80 GeV. If the electroweak theory is weakly coupled and the Higgs boson is found to be heavier than the critical value (which depends on the theory in question), cosmological remnants from the electroweak epoch are improbable.

572 citations