scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state.

TL;DR: Evidence is provided demonstrating that markers of cell death and neutrophil extracellular trap formation are independently associated with coronary artery disease, prothrombotic state, and occurrence of adverse cardiac events.
Abstract: Objective—Aberrant neutrophil activation occurs during the advanced stages of atherosclerosis. Once primed, neutrophils can undergo apoptosis or release neutrophil extracellular traps. This extracellular DNA exerts potent proinflammatory, prothrombotic, and cytotoxic properties. The goal of this study was to examine the relationships among extracellular DNA formation, coronary atherosclerosis, and the presence of a prothrombotic state. Approach and Results—In a prospective, observational, cross-sectional cohort of 282 individuals with suspected coronary artery disease, we examined the severity, extent, and phenotype of coronary atherosclerosis using coronary computed tomographic angiography. Double-stranded DNA, nucleosomes, citrullinated histone H4, and myeloperoxidase–DNA complexes, considered in vivo markers of cell death and NETosis, respectively, were established. We further measured various plasma markers of coagulation activation and inflammation. Plasma double-stranded DNA, nucleosomes, and myeloperoxidase–DNA complexes were positively associated with thrombin generation and significantly elevated in patients with severe coronary atherosclerosis or extremely calcified coronary arteries. Multinomial regression analysis, adjusted for confounding factors, identified high plasma nucleosome levels as an independent risk factor of severe coronary stenosis (odds ratio, 2.14; 95% confidence interval, 1.26–3.63; P=0.005). Markers of neutrophil extracellular traps, such as myeloperoxidase–DNA complexes, predicted the number of atherosclerotic coronary vessels and the occurrence of major adverse cardiac events. Conclusions—Our report provides evidence demonstrating that markers of cell death and neutrophil extracellular trap formation are independently associated with coronary artery disease, prothrombotic state, and occurrence of adverse cardiac events. These biomarkers could potentially aid in the prediction of cardiovascular risk in patients with chest discomfort. (Arterioscler Thromb Vasc Biol. 2013;33:2032-2040.)
Citations
More filters
Journal ArticleDOI
TL;DR: Autopsy results and literature are presented supporting the hypothesis that neutrophil extracellular traps (NETs) may contribute to organ damage and mortality in COVID-19, and existing drugs that target NETs, although unspecific, may benefit CO VID-19 patients.
Abstract: Coronavirus disease 2019 (COVID-19) is a novel, viral-induced respiratory disease that in ∼10-15% of patients progresses to acute respiratory distress syndrome (ARDS) triggered by a cytokine storm. In this Perspective, autopsy results and literature are presented supporting the hypothesis that a little known yet powerful function of neutrophils-the ability to form neutrophil extracellular traps (NETs)-may contribute to organ damage and mortality in COVID-19. We show lung infiltration of neutrophils in an autopsy specimen from a patient who succumbed to COVID-19. We discuss prior reports linking aberrant NET formation to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production. If our hypothesis is correct, targeting NETs directly and/or indirectly with existing drugs may reduce the clinical severity of COVID-19.

1,138 citations

Journal ArticleDOI
01 May 2014-Blood
TL;DR: The biological process of NET formation and how the extracellular release of DNA and protein components of NETs, such as histones and serine proteases, contributes to coagulation and platelet aggregation are described.

627 citations


Cites background from "Elevated levels of circulating DNA ..."

  • ...NETs are also present in the carotid lumen in ApoE-deficient mice on high-fat diet, proximal to atherosclerotic lesions,(56) supporting the clinical observation that NETs are implicated in coronary atherosclerosis.(57)...

    [...]

  • ...In coronary artery disease,MPO-DNA complexes are elevated in the more severe cases, positively associatedwith elevated thrombin levels, and robustly predict adverse cardiac events.(57) DNA, nucleosome, and MPO levels correlate with disease state in patients with thrombotic microangiopathies (TMAs), including thrombotic thrombocytopenic purpura (TTP), hemolytic uremic syndrome, and malignant tumorinduced TMA....

    [...]

Journal ArticleDOI
TL;DR: A phase IIb study conducted among diabetic patients at high vascular risk indicates that canakinumab, a human monoclonal antibody that targets IL-1β, markedly reduces plasma levels of IL-6, hsCRP, and fibrinogen with little change in atherogenic lipids.
Abstract: Plasma levels of the inflammatory biomarker high-sensitivity C-reactive protein (hsCRP) predict vascular risk with an effect estimate as large as that of total or high-density lipoprotein cholesterol. Further, randomized trial data addressing hsCRP have been central to understanding the anti-inflammatory effects of statin therapy and have consistently demonstrated on-treatment hsCRP levels to be as powerful a predictor of residual cardiovascular risk as on-treatment levels of low-density lipoprotein cholesterol. Yet, although hsCRP is clinically useful as a biomarker for risk prediction, most mechanistic studies suggest that CRP itself is unlikely to be a target for intervention. Moving upstream in the inflammatory cascade from CRP to interleukin (IL)-6 to IL-1 provides novel therapeutic opportunities for atheroprotection that focus on the central IL-6 signaling system and ultimately on inhibition of the IL-1β-producing NOD-like receptor family pyrin domain containing 3 inflammasome. Cholesterol crystals, neutrophil extracellular traps, atheroprone flow, and local tissue hypoxia activate the NOD-like receptor family pyrin domain containing 3 inflammasome. As such, a unifying concept of hsCRP as a downstream surrogate biomarker for upstream IL-1β activity has emerged. From a therapeutic perspective, small ischemia studies show reductions in acute-phase hsCRP production with the IL-1 receptor antagonist anakinra and the IL-6 receptor blocker tocilizumab. A phase IIb study conducted among diabetic patients at high vascular risk indicates that canakinumab, a human monoclonal antibody that targets IL-1β, markedly reduces plasma levels of IL-6, hsCRP, and fibrinogen with little change in atherogenic lipids. Canakinumab in now being tested as a method to prevent recurrent cardiovascular events in a randomized trial of 10 065 post-myocardial infarction patients with elevated hsCRP that is fully enrolled and due to complete in 2017. Clinical trials using alternative anti-inflammatory agents active against the CRP/IL-6/IL-1 axis, including low-dose methotrexate and colchicine, are being explored. If successful, these trials will close the loop on the inflammatory hypothesis of atherosclerosis and serve as examples of how fundamental biologic principles can be translated into personalized medical practice.

604 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the epidemiology, causes, clinical features, and current treatment protocols for multisystem inflammatory syndrome in children and adolescents associated with COVID-19.
Abstract: As severe acute respiratory syndrome coronavirus 2 continues to spread worldwide, there have been increasing reports from Europe, North America, Asia, and Latin America describing children and adolescents with COVID-19-associated multisystem inflammatory conditions. However, the association between multisystem inflammatory syndrome in children and COVID-19 is still unknown. We review the epidemiology, causes, clinical features, and current treatment protocols for multisystem inflammatory syndrome in children and adolescents associated with COVID-19. We also discuss the possible underlying pathophysiological mechanisms for COVID-19-induced inflammatory processes, which can lead to organ damage in paediatric patients who are severely ill. These insights provide evidence for the need to develop a clear case definition and treatment protocol for this new condition and also shed light on future therapeutic interventions and the potential for vaccine development. TRANSLATIONS: For the French, Chinese, Arabic, Spanish and Russian translations of the abstract see Supplementary Materials section.

547 citations

Journal ArticleDOI
TL;DR: The mechanisms of NLRP3 inflammasome activation and proinflammatory IL-1 family cytokine production in the context of atherosclerosis are reviewed and treatment possibilities are discussed in light of the positive outcomes of the CANTOS trial.
Abstract: Inflammation is an important driver of atherosclerosis, the underlying pathology of cardiovascular diseases. Therefore, therapeutic targeting of inflammatory pathways is suggested to improve cardiovascular outcomes in patients with cardiovascular diseases. This concept was recently proven by CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study), which demonstrated the therapeutic potential of the monoclonal IL (interleukin)-1β-neutralizing antibody canakinumab. IL-1β and other IL-1 family cytokines are important vascular and systemic inflammatory mediators, which contribute to atherogenesis. The NLRP3 (NOD [nucleotide oligomerization domain]-, LRR [leucine-rich repeat]-, and PYD [pyrin domain]-containing protein 3) inflammasome, an innate immune signaling complex, is the key mediator of IL-1 family cytokine production in atherosclerosis. NLRP3 is activated by various endogenous danger signals abundantly present in atherosclerotic lesions, such as oxidized low-density lipoprotein and cholesterol crystals. Consequently, NLRP3 inflammasome activation contributes to the vascular inflammatory response driving atherosclerosis development and progression. Here, we review the mechanisms of NLRP3 inflammasome activation and proinflammatory IL-1 family cytokine production in the context of atherosclerosis and discuss treatment possibilities in light of the positive outcomes of the CANTOS trial.

468 citations

References
More filters
Journal ArticleDOI
TL;DR: In those older than age 50, systolic blood pressure of greater than 140 mm Hg is a more important cardiovascular disease (CVD) risk factor than diastolic BP, and hypertension will be controlled only if patients are motivated to stay on their treatment plan.
Abstract: The National High Blood Pressure Education Program presents the complete Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Like its predecessors, the purpose is to provide an evidence-based approach to the prevention and management of hypertension. The key messages of this report are these: in those older than age 50, systolic blood pressure (BP) of greater than 140 mm Hg is a more important cardiovascular disease (CVD) risk factor than diastolic BP; beginning at 115/75 mm Hg, CVD risk doubles for each increment of 20/10 mm Hg; those who are normotensive at 55 years of age will have a 90% lifetime risk of developing hypertension; prehypertensive individuals (systolic BP 120-139 mm Hg or diastolic BP 80-89 mm Hg) require health-promoting lifestyle modifications to prevent the progressive rise in blood pressure and CVD; for uncomplicated hypertension, thiazide diuretic should be used in drug treatment for most, either alone or combined with drugs from other classes; this report delineates specific high-risk conditions that are compelling indications for the use of other antihypertensive drug classes (angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, beta-blockers, calcium channel blockers); two or more antihypertensive medications will be required to achieve goal BP (<140/90 mm Hg, or <130/80 mm Hg) for patients with diabetes and chronic kidney disease; for patients whose BP is more than 20 mm Hg above the systolic BP goal or more than 10 mm Hg above the diastolic BP goal, initiation of therapy using two agents, one of which usually will be a thiazide diuretic, should be considered; regardless of therapy or care, hypertension will be controlled only if patients are motivated to stay on their treatment plan. Positive experiences, trust in the clinician, and empathy improve patient motivation and satisfaction. This report serves as a guide, and the committee continues to recognize that the responsible physician's judgment remains paramount.

14,975 citations

Journal ArticleDOI
05 Mar 2004-Science
TL;DR: It is described that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria, which degrade virulence factors and kill bacteria.
Abstract: Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two examples of acute inflammation. NETs appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.

7,554 citations


"Elevated levels of circulating DNA ..." refers background in this paper

  • ...histones and azurophilic granule proteins, such as MPO and PMN elastase.(4) Histone degradation and citrullination, driven by PMN elastase and peptidylarginine deiminase 4, respectively, are key processes, which comprise the cornerstone of chromatin decondensation and subsequent NET formation....

    [...]

  • ...histones and granule proteins, are cast out, providing an extracellular scaffold to trap and kill microbial pathogens.(4) There...

    [...]

Journal ArticleDOI
TL;DR: The evidence is recounted that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree.
Abstract: ecent research has shown that inflammation plays a key role in coronary artery disease (CAD) and other manifestations of atherosclerosis. Immune cells dominate early atherosclerotic lesions, their effector molecules accelerate progression of the lesions, and activation of inflammation can elicit acute coronary syndromes. This review highlights the role of inflammation in the pathogenesis of atherosclerotic CAD. It will recount the evidence that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree. A decade ago, the treatment of hypercholesterolemia and hypertension was expected to eliminate CAD by the end of the 20th century. Lately, however, that optimistic prediction has needed revision. Cardiovascular diseases are expected to be the main cause of death globally within the next 15 years owing to a rapidly increasing prevalence in developing countries and eastern Europe and the rising incidence of obesity and diabetes in the Western world. 1 Cardiovascular diseases cause 38 percent of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. These facts force us to revisit cardiovascular disease and consider new strategies for prediction, prevention, and treatment.

7,551 citations

Journal ArticleDOI
TL;DR: It is reported that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation and may further explain the epidemiological association of infection with thrombosis.
Abstract: Neutrophil extracellular traps (NETs) are part of the innate immune response to infections. NETs are a meshwork of DNA fibers comprising histones and antimicrobial proteins. Microbes are immobilized in NETs and encounter a locally high and lethal concentration of effector proteins. Recent studies show that NETs are formed inside the vasculature in infections and noninfectious diseases. Here we report that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation. NETs perfused with blood caused platelet adhesion, activation, and aggregation. DNase or the anticoagulant heparin dismantled the NET scaffold and prevented thrombus formation. Stimulation of platelets with purified histones was sufficient for aggregation. NETs recruited red blood cells, promoted fibrin deposition, and induced a red thrombus, such as that found in veins. Markers of extracellular DNA traps were detected in a thrombus and plasma of baboons subjected to deep vein thrombosis, an example of inflammation-enhanced thrombosis. Our observations indicate that NETs are a previously unrecognized link between inflammation and thrombosis and may further explain the epidemiological association of infection with thrombosis.

1,880 citations


"Elevated levels of circulating DNA ..." refers background in this paper

  • ...Nucleosomes and histones can promote thrombin formation through the activation of either extrinsic or intrinsic coagulation pathways and through platelet activation.(7,12,35,40,41) In addition, excess of extracellular histones can affect the function of the anticoagulant protein C pathway by inhibiting protein C activation, thus resulting in enhanced thrombin formation....

    [...]

Related Papers (5)