scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Elliptic averaging of optical transfer functions for estimating astigmatism and defocus

15 Apr 2020-Optics Communications (North-Holland)-Vol. 461, pp 125213
TL;DR: In this article, an elliptic averaging procedure was proposed to estimate the defocus of optical transfer functions, which allowed to reduce the problem to a simpler one of estimating defocus only.
About: This article is published in Optics Communications.The article was published on 2020-04-15. It has received 1 citations till now. The article focuses on the topics: Optical transfer function.
Citations
More filters
Journal Article
TL;DR: In this article, a geometrical point spread function (PSF) model is used in place of the physical PSF model when the SNR is less than 30 dB.
Abstract: Point spread function (PSF) models derived from physical optics provide a more accurate representation of real blurs than simpler models based on geometrical optics. However, the physical PSF models do not always result in a significantly better restoration, due to the coarse sampling of the recording device and insufficiently high signal-to-noise ratio (SNR) levels. Low recording resolutions result in aliasing errors in the PSF and suboptimal restorations. A high-resolution representation of the PSF where aliasing errors are minimized is used to obtain improved restorations. The SNR is the parameter which ultimately limits the restoration quality and determines the need for an accurate PSF model. As a rule of thumb, the geometrical PSF can be used in place of the physical PSF without significant loss in restoration quality when the SNR is less than 30 dB.

45 citations

References
More filters
Journal ArticleDOI
TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge.

28,073 citations

Journal ArticleDOI
TL;DR: This survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area and it seems likely that the Hough transform will be an increasingly used technique.
Abstract: We present a comprehensive review of the Hough transform, HT, in image processing and computer vision. It has long been recognized as a technique of almost unique promise for shape and motion analysis in images containing noisy, missing, and extraneous data but its adoption has been slow due to its computational and storage complexity and the lack of a detailed understanding of its properties. However, in recent years much progress has been made in these areas. In this review we discuss ideas for the efficient implementation of the HT and present results on the analytic and empirical performance of various methods. We also report the relationship of Hough methods and other transforms and consider applications in which the HT has been used. It seems likely that the HT will be an increasingly used technique and we hope that this survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area.

2,099 citations

Journal ArticleDOI
TL;DR: Two computer programs are presented, CTFFIND3 and CTFTILT, which determine defocus parameters from images of untilted specimens, as well as defocus and tilt parameters from image of tilted specimens, respectively, using a simple algorithm.

1,480 citations

Journal ArticleDOI
TL;DR: The problem of blind deconvolution for images is introduced, the basic principles and methodologies behind the existing algorithms are provided, and the current trends and the potential of this difficult signal processing problem are examined.
Abstract: The goal of image restoration is to reconstruct the original scene from a degraded observation. This recovery process is critical to many image processing applications. Although classical linear image restoration has been thoroughly studied, the more difficult problem of blind image restoration has numerous research possibilities. We introduce the problem of blind deconvolution for images, provide an overview of the basic principles and methodologies behind the existing algorithms, and examine the current trends and the potential of this difficult signal processing problem. A broad review of blind deconvolution methods for images is given to portray the experience of the authors and of the many other researchers in this area. We first introduce the blind deconvolution problem for general signal processing applications. The specific challenges encountered in image related restoration applications are explained. Analytic descriptions of the structure of the major blind deconvolution approaches for images then follows. The application areas, convergence properties, complexity, and other implementation issues are addressed for each approach. We then discuss the strengths and limitations of various approaches based on theoretical expectations and computer simulations.

1,332 citations