scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Elves : Lightning-induced transient luminous events in the lower ionosphere

01 Aug 1996-Geophysical Research Letters (John Wiley & Sons, Ltd)-Vol. 23, Iss: 16, pp 2157-2160
TL;DR: In this article, a multichannel high-speed photometer and image intensified CCD cameras were carried out at Yucca Ridge Field Station (40040'N, 104o.56'W) in Colorado as part of the SPRITES'95 campaign from 15 June to August 6, 1995.
Abstract: Observations of optical phenomena at. high alti- tude a, bove thunderstorms using a multichannel high-speed photometer and image intensified CCD cameras were carried out at Yucca Ridge Field Station (40040 ' N, 104o.56 ' W), Colorado as part of the SPRITES'95 campaign from 15 June to August 6, 1995. These newneasurements indicate that diffuse optical flashes with a duration of < I ms and a hori- zontal scale of-.- 100-300 km occur at 75-105 km altitude in the lower ionosphere just after the onset of cloud-to-ground lightning discharges, but preceding the onset of sprites. Here we designate these events as 'alves" to distinguish them from 'i'ed sprites" . This finding is consistent with the production of diffuse optical emissions due to the heating of the lower ionosphere by electromagnetic pulses generated by lightning discharges as suggested by several authors.
Citations
More filters
Journal ArticleDOI
A. Aab1, P. Abreu2, Marco Aglietta3, Marco Aglietta4  +640 moreInstitutions (64)
TL;DR: The Pierre Auger Observatory as mentioned in this paper, the world's largest cosmic ray observatory, has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr.
Abstract: The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

615 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the optical emission levels are predominantly defined by the lightning discharge duration and the conductivity properties of the atmosphere/lower ionosphere (i.e., relaxation time of electric field in the conducting medium).
Abstract: Quasi-electrostatic (QE) fields that temporarily exist at high altitudes following the sudden removal (e.g., by a lightning discharge) of thundercloud charge at low altitudes lead to ambient electron heating (up to ∼5 eV average energy), ionization of neutrals, and excitation of optical emissions in the mesosphere/lower ionosphere. Model calculations predict the possibility of significant (several orders of magnitude) modification of the lower ionospheric conductivity in the form of depletions of electron density due to dissociative attachment to O2 molecules and/or in the form of enhancements of electron density due to breakdown ionization. Results indicate that the optical emission intensities of the 1st positive band of N2 corresponding to fast (∼ 1 ms) removal of 100–300 C of thundercloud charge from 10 km altitude are in good agreement with observations of the upper part (“head” and “hair” [Sentman et al., 1995]) of the sprites. The typical region of brightest optical emission has horizontal and vertical dimensions ∼10 km, centered at altitudes 70 km and is interpreted as the head of the sprite. The model also shows the formation of low intensity glow (“hair”) above this region due to the excitation of optical emissions at altitudes ∼ 85 km during ∼ 500 μs at the initial stage of the lightning discharge. Comparison of the optical emission intensities of the 1st and 2nd positive bands of N2, Meinel and 1st negative bands of , and 1st negative band of demonstrates that the 1st positive band of N2 is the dominating optical emission in the altitude range around ∼70 km, which accounts for the observed red color of sprites, in excellent agreement with recent spectroscopic observations of sprites. Results indicate that the optical emission levels are predominantly defined by the lightning discharge duration and the conductivity properties of the atmosphere/lower ionosphere (i.e., relaxation time of electric field in the conducting medium). The model demonstrates that for low ambient conductivities the lightning discharge duration can be significantly extended with no loss in production of optical emissions. The peak intensity of optical emissions is determined primarily by the value of the removed thundercloud charge and its altitude. The preexisting inhomogeneities in the mesospheric conductivity and the neutral density may contribute to the formation of a vertically striated fine structure of sprites and explain why sprites often repeatedly occur in the same place in the sky as well as their clustering. Comparison of the model results for different types of lightning discharges indicates that positive cloud to ground discharges lead to the largest electric fields and optical emissions at ionospheric altitudes since they are associated with the removal of larger amounts of charge from higher altitudes.

434 citations

Journal ArticleDOI
TL;DR: A review of the physics of lightning can be found in this article, with the goal of providing interested researchers a useful resource for starting work in this fascinating field, and the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere.

359 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed 36 sprites above the Nebraska MCS of August 6, 1994 and found that sprites are almost uniquely associated with positive cloud-to-ground (+CG) lightning flashes, and that the majority of sprites occur above the large stratiform precipitation region and not the high-reflectivity convective core of the MCS.
Abstract: Transient luminous events (sprites, blue jets, elves) above large mesoscale convective systems (MCSs) over the U.S. High Plains have been routinely monitored from the Yucca Ridge Field Station near Fort Collins, Colorado using ground-based low-light video systems. We analyzed 36 sprites above the Nebraska MCS of August 6, 1994. The results lend further support to the hypothesis that sprites are almost uniquely associated with positive cloud-to-ground (+CG) lightning flashes. Sprite-associated +CGs also averaged substantially larger peak currents than the remaining +CG population (81 kA versus 30 kA in this storm system). There is some evidence that sprite-associated +CGs also have higher stroke multiplicity. This study yields no evidence of sprites associated with negative CG events. In the central United States an additional requirement appears to be that the parent MCS has a contiguous radar reflectivity area exceeding 20-25,000 km 2 . The majority of the sprites occur above the large stratiform precipitation region and not the high-reflectivity convective core of the MCS. Triangulation of a limited number of paired images (from September 7, 1994) suggests that the sprite is generally centered within 50 km of the parent +CG. Assuming the +CG provides the range, single-image photogrammetric analyses provide estimates of the maximum vertical extent of the sprites. For this storm the sprite tops averaged 77 km with a maximum of 88 km. The bases averaged 50 km but with a few sprite tendrils extending as low as 31 km.

329 citations

Journal ArticleDOI
TL;DR: In this article, a Monte Carlo model was proposed to describe electron dynamics in air, including the thermal runaway phenomena, under the influence of an external electric field of an arbitrary strength.
Abstract: [1] Streamers are thin filamentary plasmas that can initiate spark discharges in relatively short (several centimeters) gaps at near ground pressures and are also known to act as the building blocks of streamer zones of lightning leaders. These streamers at ground pressure, after 1/N scaling with atmospheric air density N, appear to be fully analogous to those documented using telescopic imagers in transient luminous events (TLEs) termed sprites, which occur in the altitude range 40–90 km in the Earth's atmosphere above thunderstorms. It is also believed that the filamentary plasma structures observed in some other types of TLEs, which emanate from the tops of thunderclouds and are termed blue jets and gigantic jets, are directly linked to the processes in streamer zones of lightning leaders. Acceleration, expansion, and branching of streamers are commonly observed for a wide range of applied electric fields. Recent analysis of photoionization effects on the propagation of streamers indicates that very high electric field magnitudes ∼10 Ek, where Ek is the conventional breakdown threshold field defined by the equality of the ionization and dissociative attachment coefficients in air, are generated around the tips of streamers at the stage immediately preceding their branching. This paper describes the formulation of a Monte Carlo model, which is capable of describing electron dynamics in air, including the thermal runaway phenomena, under the influence of an external electric field of an arbitrary strength. Monte Carlo modeling results indicate that the ∼10 Ek fields are able to accelerate a fraction of low-energy (several eV) streamer tip electrons to energies of ∼2–8 keV. With total potential differences on the order of tens of MV available in streamer zones of lightning leaders, it is proposed that during a highly transient negative corona flash stage of the development of negative stepped leader, electrons with energies 2–8 keV ejected from streamer tips near the leader head can be further accelerated to energies of hundreds of keV and possibly to several tens of MeV, depending on the particular magnitude of the leader head potential. It is proposed that these energetic electrons may be responsible (through the “bremsstrahlung” process) for the generation of hard X rays observed from ground and satellites preceding lightning discharges or with no association with lightning discharges in cases when the leader process does not culminate in a return stroke. For a lightning leader carrying a current of 100 A, an initial flux of ∼2–8 keV thermal runaway electrons integrated over the cross-sectional area of the leader is estimated to be ∼1018 s−1, with the number of electrons accelerated to relativistic energies depending on the particular field magnitude and configuration in the leader streamer zone during the negative corona flash stage of the leader development. These thermal runaway electrons could provide an alternate source of relativistic seed electrons which were previously thought to require galactic cosmic rays. The duration of the negative corona flash and associated energetic radiation is estimated to be in the range from ∼1 μs to ∼1 ms depending mostly on the pressure-dependent size of the leader streamer zone.

316 citations

References
More filters
Journal ArticleDOI
06 Jul 1990-Science
TL;DR: An image of an unusual luminous electrical discharge over a thunderstorm 250 kilometers from the observing site has been obtained with a low-light-level television camera and resembled two jets or fountains and was probably caused by two localizd electric charge concentrations at the cloud tops.
Abstract: An image of an unusual luminous electrical discharge over a thunderstorm 250 kilometers from the observing site has been obtained with a low-light-level television camera. The discharge began at the cloud tops at 14 kilometers and extended into the clear air 20 kilometers higher. The image, which had a duration of less than 30 milliseconds,resembled two jets or fountains and was probably caused by two localizd electric charge concentrations at the cloud tops. Large upward discharges may create a hazard for aircraft and rocket launches and, by penetrating into the ionosphere, may initiate whistler waves and other effects on a magnetospheric scale. Such upward electrical discharges may account for unexplained photometric observations of distant lightning events that showed a low rise rate of the luminous pulse and no electromagnetic sferic pulse of the type that accompanies cloud-to-earth lightning strokes. An unusually high rate of such photometric events was recorded during the night of 22 to 23 September 1989 during a storm associated with hurricane Hugo.

463 citations

Journal ArticleDOI
TL;DR: The dual jet aircraft Sprites94 campaign yielded the first color imagery and unambiguously triangulated physical dimensions and heights of upper atmospheric optical emissions associated with thunderstorm systems as mentioned in this paper.
Abstract: The dual jet aircraft Sprites94 campaign yielded the first color imagery and unambiguously triangulated physical dimensions and heights of upper atmospheric optical emissions associated with thunderstorm systems. Low light level television images, in both color and in black and white (B/W), obtained during the campaign show that there are at least two distinctively different types of optical emissions spanning part or all of the distance between the anvil tops and the ionosphere. The first of these emissions, dubbed 'sprites' after their elusive nature, are luminous structures of brief (less than 16 ms) duration with a red main body that typically spans the latitude range 50-90 km, and possessing lateral dimensions of 5-30 km. Faint bluish tendrils often extend downward from the main body of sprites, occasionally appearing to reach cloud tops near 20 km. In this paper the principal characteristics of red sprites as observed during the Sprites94 campaign are described. The second distinctive type of emissions, 'blue jets,' are described in a companion paper (Wescott et al., this issue).

452 citations

Journal ArticleDOI
25 Aug 1995-Science
TL;DR: In two summertime mesoscale convective systems, mesospheric optical sprite phenomena were often coincident with both large-amplitude positive cloud-to-ground lightning and transient Schumann resonance excitations of the entire Earth-ionosphere cavity.
Abstract: In two summertime mesoscale convective systems (MCSs), mesospheric optical sprite phenomena were often coincident with both large-amplitude positive cloud-to-ground lightning and transient Schumann resonance excitations of the entire Earth-ionosphere cavity. These observations, together with earlier studies of MCS electrification, suggest that sprites are triggered when the rapid removal of large quantities of positive charge from an areally extensive charge layer stresses the mesosphere to dielectric breakdown.

356 citations

Journal ArticleDOI
TL;DR: The first observations of a newly documented type of optical emission above thunderstorms are reported in this paper, which is called "blue jets" or narrowly collimated beams of blue light that appear to propagate upwards from the tops of thunderstorms, were recorded on B/W and color video cameras for the first time during the Sprites94 aircraft campaign, June-July 1994.
Abstract: Initial observations of a newly documented type of optical emission above thunderstorms are reported. 'Blue jets', or narrowly collimated beams of blue light that appear to propagate upwards from the tops of thunderstorms, were recorded on B/W and color video cameras for the first time during the Sprites94 aircraft campaign, June-July, 1994. The jets appear to propagate upward at speeds of about 100 km/s and reach terminal altitudes of 40-50 m. Fifty six examples were recorded during a 22 minute interval during a storm over Arkansas. We examine some possible mechanisms, but have no satisfactory theory of this phenomenon.

351 citations

Journal ArticleDOI
TL;DR: In this paper, quasi-electrostatic (QE) fields that temporarily exist at high altitudes following the sudden removal (e.g., by a lightning discharge) of thundercloud charge at low altitudes are found to significantly heat mesospheric electrons and produce ionization and light.
Abstract: Quasi-electrostatic (QE) fields that temporarily exist at high altitudes following the sudden removal (e.g., by a lightning discharge) of thundercloud charge at low altitudes are found to significantly heat mesospheric electrons and produce ionization and light. The intensity, spatial extent, duration and spectra of optical emissions produced are consistent with the observed features of the Red Sprite type of upward discharges.

207 citations