scispace - formally typeset
Search or ask a question
Book•

EMATs for Science and Industry: Noncontacting Ultrasonic Measurements

TL;DR: In this paper, the authors present a survey of EMAT techniques and their applications in the industrial domain, including on-line texture monitoring of steel sheets and in-situ monitoring of Dislocation Mobility.
Abstract: Preface. Introduction: Noncontact Ultrasonic Measurements. Brief Historical Sketch of EMAT. Electromagnetic Acoustic Resonance - EMAR. Part I: Development of EMAT Techniques. 1: Coupling Mechanism. 1.1. Background. 1.2. Generation Mechanism. 1.3. Receiving Mechanisms. 1.4. Comparison with Measurements. 2 : Available EMATS. 2.1. Bulk-Wave EMATs. 2.2. Longitudinal-Guided-Wave EMAT for Wires and Pipes. 2.3. PPM EMAT. 2.4. Meander-Line Coil SH-Wave EMAT. 2.5. SH-Wave EMAT for Chirp Pulse Compression. 2.6. Axial-Shear-Wave EMAT. 2.7. SH-Wave EMAT for Resonance in Bolt Head. 2.8. Rayleigh-Wave EMAT. 2.9. Line-Focusing EMAT. 2.10. Trapped-Torsional-Mode EMAT. 2.11. EMATs for High Temperature Measurements. 3: Brief Instruction To Build EMATs. 3.1. Coil. 3.2. Magnets. 3.3. Impedance Matching. Part II: Resonance Spectroscopy with EMATs -EMAR-. 4: Principles of EMAR for Spectral Response. 4.1. Through-Thickness Resonance. 4.2. Spectroscopy with Analog Superheterodyne Processing. 4.3. Determination of Resonance Frequency and Phase Angle. 5: Free-Decay Measurement For Attenuation And Internal Friction. 5.1. Difficulty of Attenuation Measurement. 5.2. Isolation of Ultrasonic Attenuation. 5.3. Measurement of Attenuation Coefficient. 5.4. Correction for Diffraction Loss. 5.5. Comparison with Conventional Technique. Part III: Physical-Acoustics Studies. 6: In-Situ Monitoring Of Dislocation Mobility. 6.1. Dislocation-Damping Model for Low Frequencies. 6.2. Elasto-Plastic Deformation in Copper. 6.3. Point-Defect Diffusion toward Dislocations in Deformed Aluminum. 6.4. Dislocation Damping after Elastic Deformation in Al-Zn Alloy. 6.5. Recovery and Recrystallization in Aluminum. 7: Elastic Constants and Internal Friction of Advanced Materials. 7.1. Mode Control in Resonance Ultrasound Spectroscopy by EMAR. 7.2. Inverse Calculation for Cij and Qij-1. 7.3. Monocrystal Copper. 7.4. Metal-Matrix Composites (SiCf/Ti-6Al-4V). 7.5. Lotus-Type Porous Copper. 7.6. Ni-Base Superalloys. 7.7. Thin Films. 7.8. Piezoelectric Material (Langasite: La3Ga5SiO14). 8: Nonlinear Acoustics. Part IV: Industrial Applications. 9: On-Line Texture Monitoring Of Steel Sheets. 9.1. Texture of Polycrystalline Metals. 9.2. Mathematical Expressions of Texture and Velocity Anisotropy. 9.3. Relation between ODCs and r-Values. 9.4. On-Line Monitoring with Magnetostrictive-Type EMATs. 10: Acoustoelastic Stress Measurements. 10.1. Nonlinear Elasticity. 10.2. Acoustoelastic Response of Solids. 10.3. Birefringence Acoustoelasticity. 10.4. Practical Stress Measurements with EMAR. 10.5. Monitoring Bolt Axial Stress. 11: Measurements On High-Temperature Steels. 11.1. Velocity Variation at High Temperatures. 11.2. Solidification-Shell Thickness of Continuous Casting S
Citations
More filters
Journal Article•DOI•
TL;DR: A variety of state-of-the-art MPT configurations and their applications will be reviewed along with the working principle of this transducer type.

200 citations

Journal Article•DOI•
TL;DR: A finite element model of the elementary transducers has been developed and shows that magnetostrictive EMATs directly applied on mild steel plates have comparatively poor performance that is dependent on the precise magneto-mechanical properties of the test object.
Abstract: Guided wave inspection has proven to be a very effective method for the rapid inspection of large structures. The fundamental shear horizontal (SH) wave mode in plates and the torsional mode in pipe-like structures are especially useful because of their non-dispersive character. Guided waves can be generated by either piezoelectric transducers or electro- magnetic acoustic transducers (EMATs), and EMATs can be based on either the Lorentz force or magnetostriction. Several EMAT configurations can be used to produce SH waves, the most common being Lorentz-force periodic permanent magnet and magnetostrictive EMATs, the latter being directly applied on the sample or with a bonded strip of highly magnetostrictive material on the plate. This paper compares the performance of these solutions on steel structures. To quantitatively assess the wave amplitude produced by different probes, a finite element model of the elementary transducers has been developed. The results of the model are experimentally validated and the simulations are further used to study the dependence of ultrasonic wave amplitude on key design parameters. The analysis shows that magnetostrictive EMATs directly applied on mild steel plates have comparatively poor performance that is dependent on the precise magneto-mechanical properties of the test object. Periodic permanent magnet EMATs generate intermediate wave amplitudes and are noncontact and insensitive to the variations in properties seen across typical steels. Large signal amplitudes can be achieved with magnetostrictive EMATs with a layer of highly magnetostrictive material attached between the transducer and the plate, but this compromises the noncontact nature of the transducer.

149 citations


Cites background from "EMATs for Science and Industry: Non..."

  • ...another attractive feature of EmaTs is their capability of generating a wide range of ultrasonic wave modes, by careful design of their geometric configuration [6], [7], including shear horizontal (sH) waves in plate-like structures or torsional waves in pipe-like components—wave modes which are not easily excited by traditional piezoelectric transducers....

    [...]

  • ...Hirao and ogi [6] have shown that within the strong bias approximation, d has only two independent components: d22, proportional to the derivative of the magnetostriction curve at the operation point, and d61, proportional to the ratio of magnetostrictive strain over magnetic bias field....

    [...]

Journal Article•DOI•
TL;DR: This paper proposes a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes.

106 citations


Cites background from "EMATs for Science and Industry: Non..."

  • ...It should be mentioned that in ferromagnetic materials, in addition to the above described effect of Lorentz forces, two other transduction mechanisms, namely magnetostriction and magnetization forces are also significant [32]....

    [...]

Journal Article•DOI•
TL;DR: The presence of a crack-like defect on the sheet can be detected by either a sudden change in the ultrasonic waveform or by an enhancement in the frequency content of the waveform when the laser beam illuminates directly onto the crack.

105 citations

Journal Article•DOI•
TL;DR: In this paper, the authors explored mode conversion of shear horizontal (SH) guided wave when it impinges on smooth defects in plates and found that the fundamental (SH 0 ) and the first higher (SH 1 ) modes exhibited unique mode conversion behaviors in tapered edge.
Abstract: The present study explores mode conversion of shear horizontal (SH) guided wave when it impinges on smooth defects in plates. The fundamental (SH 0 ) and the first higher (SH 1 ) modes were selectively generated by an electromagnetic acoustic transducer in aluminum plates and the propagating modes at various points were detected by a pinducer. The defects had a flat bottom region and tapered edges. Remaining thickness at the bottom defected region was smaller than the so-called cut-off thickness of SH 1 mode. Both modes exhibited unique mode conversion behaviors in tapered edge, which were interpreted with the dispersion relation. Total reflection of SH 1 mode was also observed at a specific condition. Numerical simulation revealed that the continuous wavenumber change in the tapered region and the consequent zero value at cut-off thickness cause this total reflection.

98 citations