scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer.

TL;DR: The pyrimidine core-containing compound Osimertinib is the only EGFR-TKI from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR) as discussed by the authors.
Abstract: The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Citations
More filters
Journal ArticleDOI
TL;DR: It is predicted that a better understanding of the effects of conformational restriction about a prospective atropisomeric axis on target binding will empower chemists to rapidly “program” the selectivity of a lead molecule toward a desired target.
Abstract: Conspectus Atropisomerism is a conformational chirality that occurs when there is hindered rotation about a σ-bond. While atropisomerism is exemplified by biaryls, it is observed in many other pharmaceutically relevant scaffolds including heterobiaryls, benzamides, diarylamines, and anilides. As bond rotation leads to racemization, atropisomers span the gamut of stereochemical stability. LaPlante has classified atropisomers based on their half-life of racemization at 37 °C: class 1 (t1/2 < 60 s), class 2 (60 s < t1/2 < 4.5 years), and class 3 (t1/2 > 4.5 years). In general, class-3 atropisomers are considered to be suitable for drug development. There are currently four FDA-approved drugs that exist as stable atropisomers, and many others are in clinical trials or have recently appeared in the drug discovery literature. Class-1 atropisomers are more prevalent, with ∼30% of recent FDA-approved small molecules possessing at least one class-1 axis. While class-1 atropisomers do not possess the requisite stereochemical stability to meet the classical definition of atropisomerism, they often bind a given target in a specific set of chiral conformations. Over the past decade, our laboratory has embarked on a research program aimed at leveraging atropisomerism as a design feature to improve the target selectivity of promiscuous lead compounds. Our studies initially focused on introducing class-3 atropisomerism into promiscuous kinase inhibitors, resulting in a proof of principle in which the different atropisomers of a compound can have different selectivity profiles with potentially improved target selectivity. This inspired a careful analysis of the binding conformations of diverse ligands bound to different target proteins, resulting in the realization that the sampled dihedral conformations about a prospective atropisomeric axis played a key role in target binding and that preorganizing the prospective atropisomeric axis into a desired target’s preferred conformational range can lead to large gains in target selectivity. As atropisomerism is becoming more prevalent in modern drug discovery, there is an increasing need for strategies for atropisomerically pure samples of pharmaceutical compounds. This has led us and other groups to develop catalytic atroposelective methodologies toward pharmaceutically privileged scaffolds. Our laboratory has contributed examples of atroposelective methodologies toward heterobiaryl systems while also exploring the chirality of less-studied atropisomers such as diarylamines and related scaffolds. This Account will detail recent encounters with atropisomerism in medicinal chemistry and how atropisomerism has transitioned from a “lurking menace” into a leverageable design strategy in order to modulate various properties of biologically active small molecules. This Account will also discuss recent advances in atroposelective synthesis, with a focus on methodologies toward pharmaceutically privileged scaffolds. We predict that a better understanding of the effects of conformational restriction about a prospective atropisomeric axis on target binding will empower chemists to rapidly “program” the selectivity of a lead molecule toward a desired target.

25 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: In this paper, pharmacophore modeling studies have been performed for a series of 2,4-disubstituted pyrimidines derivatives as EGFR L858R/T790M tyrosine kinase inhibitors.
Abstract: Pharmacophore modelling studies have been performed for a series of 2,4-disubstituted-pyrimidines derivatives as EGFR L858R/T790M tyrosine kinase inhibitors. The high scoring AARR.15 hypothesis was selected as the best pharmacophore model with the highest survival score of 3.436 having two hydrogen bond acceptors and two aromatic ring features. Pharmacophore-based virtual screening followed by structure-based yielded the six molecules (ZINC17013227, ZINC17013215, ZINC9573324, ZINC9573445, ZINC24023331 and ZINC17013503) from the ZINC database with significant in silico predicted activity and strong binding affinity towords the EGFR L858R/T790M tyrosine kinase. In silico toxicity and cytochrome profiling indicates that all the 06 virtually screened compounds were substrate/inhibitors of the CYP-3A4 metabolizing enzyme and were non-carcinogenic and devoid of Ames mutagenesis. Density functional theory (DFT) and molecular dynamic (MD) simulation further validated the obtained hits.

24 citations

Journal ArticleDOI
TL;DR: BLU-945 (compound 30) is a potent, reversible, wild-type-sparing inhibitor of EGFR+/T790M/C797S resistance mutants that maintains activity against the sensitizing mutations, especially L858R.
Abstract: While epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the treatment landscape for EGFR mutant (L858R and ex19del)-driven non-small-cell lung cancer (NSCLC), most patients will eventually develop resistance to TKIs. In the case of first- and second-generation TKIs, up to 60% of patients will develop an EGFR T790M mutation, while third-generation irreversible TKIs, like osimertinib, lead to C797S as the primary on-target resistance mutation. The development of reversible inhibitors of these resistance mutants is often hampered by poor selectivity against wild-type EGFR, resulting in potentially dose-limiting toxicities and a sub-optimal profile for use in combinations. BLU-945 (compound 30) is a potent, reversible, wild-type-sparing inhibitor of EGFR+/T790M and EGFR+/T790M/C797S resistance mutants that maintains activity against the sensitizing mutations, especially L858R. Pre-clinical efficacy and safety studies supported progression of BLU-945 into clinical studies, and it is currently in phase 1/2 clinical trials for treatment-resistant EGFR-driven NSCLC.

18 citations

Journal ArticleDOI
TL;DR: Interestingly, it is found that the mutant but not the WT EGFR can effectively form EGFR-PROTAC-E3 ligase ternary complexes, providing a potential therapeutic strategy for patients withWT EGFR overexpression.
Abstract: Several epidermal growth factor receptor (EGFR) proteolysis-targeting chimeras (PROTACs), including MS39 and MS154 developed by us, have been reported to effectively degrade the mutant but not the wild-type (WT) EGFR. However, the mechanism underlying the selectivity in degrading the mutant over the WT EGFR has not been elucidated. Here, we report comprehensive structure-activity relationship studies that led to the discovery of two novel EGFR degraders, 31 (MS9449) and 72 (MS9427), and mechanistic studies of these EGFR degraders. Compounds 31 and 72 selectively degraded the mutant but not the WT EGFR through both ubiquitination/proteasome and autophagy/lysosome pathways. Interestingly, we found that the mutant but not the WT EGFR can effectively form EGFR-PROTAC-E3 ligase ternary complexes. Furthermore, we found that PI3K inhibition sensitized WT EGFR to PROTAC-induced degradation and combination treatment with a PI3K inhibitor enhanced antiproliferation activities of EGFR degraders in cancer cells harboring WT EGFR, providing a potential therapeutic strategy for patients with WT EGFR overexpression.

8 citations

Journal ArticleDOI
TL;DR: In this article , the authors outline the panorama of the fourth-generation EGFR-TKIs reported up to now with the attention paid on the design strategy, binding mode and antitumor activity of these EGFR TKIs.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: Anti-PD-1 antibody produced objective responses in approximately one in four to one in five patients with non-small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use.
Abstract: Background Blockade of programmed death 1 (PD-1), an inhibitory receptor expressed by T cells, can overcome immune resistance. We assessed the antitumor activity and safety of BMS-936558, an antibody that specifically blocks PD-1. Methods We enrolled patients with advanced melanoma, non–small-cell lung cancer, castrationresistant prostate cancer, or renal-cell or colorectal cancer to receive anti–PD-1 antibody at a dose of 0.1 to 10.0 mg per kilogram of body weight every 2 weeks. Response was assessed after each 8-week treatment cycle. Patients received up to 12 cycles until disease progression or a complete response occurred. Results A total of 296 patients received treatment through February 24, 2012. Grade 3 or 4 drugrelated adverse events occurred in 14% of patients; there were three deaths from pulmonary toxicity. No maximum tolerated dose was defined. Adverse events consistent with immune-related causes were observed. Among 236 patients in whom response could be evaluated, objective responses (complete or partial responses) were observed in those with non–small-cell lung cancer, melanoma, or renal-cell cancer. Cumulative response rates (all doses) were 18% among patients with non–small-cell lung cancer (14 of 76 patients), 28% among patients with melanoma (26 of 94 patients), and 27% among patients with renal-cell cancer (9 of 33 patients). Responses were durable; 20 of 31 responses lasted 1 year or more in patients with 1 year or more of follow-up. To assess the role of intratumoral PD-1 ligand (PD-L1) expression in the modulation of the PD-1–PD-L1 pathway, immunohistochemical analysis was performed on pretreatment tumor specimens obtained from 42 patients. Of 17 patients with PD-L1–negative tumors, none had an objective response; 9 of 25 patients (36%) with PD-L1–positive tumors had an objective response (P = 0.006). Conclusions Anti–PD-1 antibody produced objective responses in approximately one in four to one in five patients with non–small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use. Preliminary data suggest a relationship between PD-L1 expression on tumor cells and objective response. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT00730639.)

10,674 citations

Journal ArticleDOI
TL;DR: Nivolumab was associated with even greater efficacy than docetaxel across all end points in subgroups defined according to prespecified levels of tumor-membrane expression (≥1, ≥5%, and ≥10%) of the PD-1 ligand.
Abstract: BackgroundNivolumab, a fully human IgG4 programmed death 1 (PD-1) immune-checkpoint–inhibitor antibody, disrupts PD-1–mediated signaling and may restore antitumor immunity. MethodsIn this randomized, open-label, international phase 3 study, we assigned patients with nonsquamous non–small-cell lung cancer (NSCLC) that had progressed during or after platinum-based doublet chemotherapy to receive nivolumab at a dose of 3 mg per kilogram of body weight every 2 weeks or docetaxel at a dose of 75 mg per square meter of body-surface area every 3 weeks. The primary end point was overall survival. ResultsOverall survival was longer with nivolumab than with docetaxel. The median overall survival was 12.2 months (95% confidence interval [CI], 9.7 to 15.0) among 292 patients in the nivolumab group and 9.4 months (95% CI, 8.1 to 10.7) among 290 patients in the docetaxel group (hazard ratio for death, 0.73; 96% CI, 0.59 to 0.89; P=0.002). At 1 year, the overall survival rate was 51% (95% CI, 45 to 56) with nivolumab ve...

7,474 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
TL;DR: Among patients with advanced, previously treated squamous-cell NSCLC, overall survival, response rate, and progression-free survival were significantly better with nivolumab than with docetaxel, regardless of PD-L1 expression level.
Abstract: BackgroundPatients with advanced squamous-cell non–small-cell lung cancer (NSCLC) who have disease progression during or after first-line chemotherapy have limited treatment options. This randomized, open-label, international, phase 3 study evaluated the efficacy and safety of nivolumab, a fully human IgG4 programmed death 1 (PD-1) immune-checkpoint–inhibitor antibody, as compared with docetaxel in this patient population. MethodsWe randomly assigned 272 patients to receive nivolumab, at a dose of 3 mg per kilogram of body weight every 2 weeks, or docetaxel, at a dose of 75 mg per square meter of body-surface area every 3 weeks. The primary end point was overall survival. ResultsThe median overall survival was 9.2 months (95% confidence interval [CI], 7.3 to 13.3) with nivolumab versus 6.0 months (95% CI, 5.1 to 7.3) with docetaxel. The risk of death was 41% lower with nivolumab than with docetaxel (hazard ratio, 0.59; 95% CI, 0.44 to 0.79; P<0.001). At 1 year, the overall survival rate was 42% (95% CI, 3...

6,869 citations