scispace - formally typeset
Open accessJournal ArticleDOI: 10.1080/08830185.2020.1800688

Emerging Human Coronavirus Infections (SARS, MERS, and COVID-19): Where They Are Leading Us.

04 Mar 2021-International Reviews of Immunology (Informa UK Limited)-Vol. 40, pp 5-53
Abstract: Coronavirus infections are responsible for mild, moderate, and severe infections in birds and mammals. These were first isolated in humans as causal microorganisms responsible for common cold. The 2002-2003 SARS epidemic caused by SARS-CoV and 2012 MERS epidemic (64 countries affected) caused by MERS-CoV showed their acute and fatal side. These two CoV infections killed thousands of patients infected worldwide. However, WHO has still reported the MERS case in December 2019 in middle-eastern country (Saudi Arabia), indicating the MERS epidemic has not ended completely yet. Although we have not yet understood completely these two CoV epidemics, a third most dangerous and severe CoV infection has been originated in the Wuhan city, Hubei district of China in December 2019. This CoV infection called COVID-19 or SARS-CoV2 infection has now spread to 210 countries and territories around the world. COVID-19 has now been declared a pandemic by the World Health Organization (WHO). It has infected more than 16.69 million people with more than 663,540 deaths across the world. Thus the current manuscript aims to describe all three (SARS, MERS, and COVID-19) in terms of their causal organisms (SARS-CoV, MERS-CoV, and SARS-CoV2), similarities and differences in their clinical symptoms, outcomes, immunology, and immunopathogenesis, and possible future therapeutic approaches.

... read more

Citations
  More

13 results found


Open access
Huijun Chen1, Juanjuan Guo1, Chen Wang2, Fan Luo1  +10 moreInstitutions (3)
01 Sep 2020-
Abstract: Summary Background Previous studies on the pneumonia outbreak caused by the 2019 novel coronavirus disease (COVID-19) were based on information from the general population. Limited data are available for pregnant women with COVID-19 pneumonia. This study aimed to evaluate the clinical characteristics of COVID-19 in pregnancy and the intrauterine vertical transmission potential of COVID-19 infection. Methods Clinical records, laboratory results, and chest CT scans were retrospectively reviewed for nine pregnant women with laboratory-confirmed COVID-19 pneumonia (ie, with maternal throat swab samples that were positive for severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) who were admitted to Zhongnan Hospital of Wuhan University, Wuhan, China, from Jan 20 to Jan 31, 2020. Evidence of intrauterine vertical transmission was assessed by testing for the presence of SARS-CoV-2 in amniotic fluid, cord blood, and neonatal throat swab samples. Breastmilk samples were also collected and tested from patients after the first lactation. Findings All nine patients had a caesarean section in their third trimester. Seven patients presented with a fever. Other symptoms, including cough (in four of nine patients), myalgia (in three), sore throat (in two), and malaise (in two), were also observed. Fetal distress was monitored in two cases. Five of nine patients had lymphopenia ( Interpretation The clinical characteristics of COVID-19 pneumonia in pregnant women were similar to those reported for non-pregnant adult patients who developed COVID-19 pneumonia. Findings from this small group of cases suggest that there is currently no evidence for intrauterine infection caused by vertical transmission in women who develop COVID-19 pneumonia in late pregnancy. Funding Hubei Science and Technology Plan, Wuhan University Medical Development Plan.

... read more

Topics: Pneumonia (57%), Sore throat (54%), Fetal distress (51%) ... show more

181 Citations


Open accessJournal ArticleDOI: 10.1016/J.INTIMP.2020.107087
Vijay Kumar1Institutions (1)
Abstract: Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.

... read more

Topics: Cytokine storm (64%), Pattern recognition receptor (57%), Cytokine (55%) ... show more

26 Citations


Open accessJournal ArticleDOI: 10.1016/J.INTIMP.2020.106980
Vijay Kumar1Institutions (1)
Abstract: Emerging infectious diseases always pose a threat to humans along with plant and animal life. SARS-CoV2 is the recently emerged viral infection that originated from Wuhan city of the Republic of China in December 2019. Now, it has become a pandemic. Currently, SARS-CoV2 has infected more than 27.74 million people worldwide, and taken 901,928 human lives. It was named first 'WH 1 Human CoV' and later changed to 2019 novel CoV (2019-nCoV). Scientists have established it as a zoonotic viral disease emerged from Chinese horseshoe bats, which do not develop a severe infection. For example, Rhinolophus Chinese horseshoe bats harboring severe acute respiratory syndrome-related coronavirus (SARSr-CoV) or SARSr-Rh-BatCoV appear healthy and clear the virus within 2-4 months period. The article introduces first the concept of EIDs and some past EIDs, which have affected human life. Next section discusses mysteries regarding SARS-CoV2 origin, its evolution, and human transfer. Third section describes COVID-19 clinical symptoms and factors affecting susceptibility or resistance. The fourth section introduces the SARS-CoV2 entry in the host cell, its replication, and the establishment of productive infection. Section five describes the host's immune response associated with asymptomatic, symptomatic, mild to moderate, and severe COVID-19. The subsequent seventh and eighth sections mention the immune status in COVID-19 convalescent patients and re-emergence of COVID-19 in them. Thereafter, the eighth section describes viral strategies to hijack the host antiviral immune response and generate the "cytokine storm". The ninth section describes about transgenic humane ACE2 (hACE2) receptor expressing mice to study immunity, drugs, and vaccines. The article ends with the development of different immunomodulatory and immunotherapeutics strategies, including vaccines waiting for their approval in humans as prophylaxis or treatment measures.

... read more

21 Citations


Open accessJournal ArticleDOI: 10.1080/08830185.2020.1840567
Vijay Kumar1Institutions (1)
Abstract: SARS-CoV2 infection or COVID-19 has created panic around the world since its first origin in December 2019 in Wuhan city, China. The COVID-19 pandemic has infected more than 46.4 million people, with 1,199,727 deaths. The immune system plays a crucial role in the severity of COVID-19 and the development of pneumonia-induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Along with providing protection, both innate and T cell-based adaptive immune response dysregulate during severe SARS-CoV2 infection. This dysregulation is more pronounced in older population and patients with comorbidities (Diabetes, hypertension, obesity, other pulmonary and autoimmune diseases). However, COVID-19 patients develop protective antibodies (Abs) against SARS-CoV2, but they do not long for last. The induction of the immune response against the pathogen also requires metabolic energy that generates through the process of immunometabolism. The change in the metabolic stage of immune cells from homeostasis to an inflammatory or infectious environment is called immunometabolic reprogramming. The article describes the cellular immunology (macrophages, T cells, B cells, dendritic cells, NK cells and pulmonary epithelial cells (PEC) and vascular endothelial cells) and the associated immune response during COVID-19. Immunometabolism may serve as a cell-specific therapeutic approach to target COVID-19.

... read more

Topics: Acquired immune system (61%), Immune system (59%), T cell (58%) ... show more

10 Citations



References
  More

465 results found


Open accessJournal ArticleDOI: 10.1016/S0140-6736(20)30183-5
Chaolin Huang1, Yeming Wang2, Xingwang Li3, Lili Ren4  +25 moreInstitutions (8)
24 Jan 2020-The Lancet
Abstract: A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not.

... read more

26,390 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA2002032
Wei-jie Guan1, Zhengyi Ni1, Yu Hu1, Wenhua Liang1  +33 moreInstitutions (1)
Abstract: Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of...

... read more

16,855 Citations


Open accessJournal ArticleDOI: 10.1016/S0140-6736(20)30211-7
Nanshan Chen1, Min Zhou2, Xuan Dong1, Jie-Ming Qu2  +10 moreInstitutions (3)
30 Jan 2020-The Lancet
Abstract: In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020.

... read more

12,381 Citations


Open accessJournal ArticleDOI: 10.1038/S41586-020-2012-7
Peng Zhou1, Xing-Lou Yang1, Xian Guang Wang2, Ben Hu1  +25 moreInstitutions (3)
03 Feb 2020-Nature
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

... read more

Topics: Coronavirus (67%), Betacoronavirus (54%), Deltacoronavirus (51%) ... show more

12,056 Citations


Open accessJournal ArticleDOI: 10.1001/JAMA.2020.2648
Zunyou Wu1, Jennifer M. McGoogan1Institutions (1)
07 Apr 2020-JAMA
Abstract: Background: Hospitalised COVID-19 patients are frequently elderly subjects with co-morbidities receiving polypharmacy, all of which are known risk factors for d

... read more

Topics: Outbreak (56%)

10,464 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20219
20203
20121