scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Emission Mechanisms of Fast Radio Bursts

04 Mar 2021-Universe (Multidisciplinary Digital Publishing Institute)-Vol. 7, Iss: 3, pp 56
TL;DR: In this paper, the basic physics of coherent emission mechanisms proposed for fast radio bursts are reviewed, including the curvature emission of bunches, the synchrotron maser, and the emission of radio waves by variable currents during magnetic reconnection.
Abstract: Fast radio bursts (FRBs) are recently discovered mysterious single pulses of radio emission, mostly coming from cosmological distances (∼1 Gpc). Their short duration, ∼1 ms, and large luminosity demonstrate coherent emission. I review the basic physics of coherent emission mechanisms proposed for FRBs. In particular, I discuss the curvature emission of bunches, the synchrotron maser, and the emission of radio waves by variable currents during magnetic reconnection. Special attention is paid to magnetar flares as the most promising sources of FRBs. Non-linear effects are outlined that could place bounds on the power of the outgoing radiation.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reported on the host association of FRB 20181030A, a repeating fast radio burst (FRB) with a low dispersion measure (DM, 103.5 pc cm$-3}$) discovered by CHIME/FRB Collaboration et al. Using baseband voltage data saved for its repeat bursts, they localize the FRB to a sky area of 5.3 sq. arcmin (90% confidence).
Abstract: We report on the host association of FRB 20181030A, a repeating fast radio burst (FRB) with a low dispersion measure (DM, 103.5 pc cm$^{-3}$) discovered by CHIME/FRB Collaboration et al. (2019a). Using baseband voltage data saved for its repeat bursts, we localize the FRB to a sky area of 5.3 sq. arcmin (90% confidence). Within the FRB localization region, we identify NGC 3252 as the most promising host, with an estimated chance coincidence probability $< 2.5 \times 10^{-3}$. Moreover, we do not find any other galaxy with M$_{r} < -15$ AB mag within the localization region to the maximum estimated FRB redshift of 0.05. This rules out a dwarf host 5 times less luminous than any FRB host discovered to date. NGC 3252 is a star-forming spiral galaxy, and at a distance of $\approx$ 20 Mpc, it is one of the closest FRB hosts discovered thus far. From our archival radio data search, we estimate a 3$\sigma$ upper limit on the luminosity of a persistent compact radio source (source size $<$ 0.3 kpc at 20 Mpc) at 3 GHz to be ${\rm 2 \times 10^{26} erg~s^{-1} Hz^{-1}}$, at least 1500 times smaller than that of the FRB 20121102A persistent radio source. We also argue that a population of young millisecond magnetars alone cannot explain the observed volumetric rate of repeating FRBs. Finally, FRB 20181030A is a promising source for constraining FRB emission models due to its proximity, and we strongly encourage its multi-wavelength follow-up.

26 citations

Journal ArticleDOI
TL;DR: In this article, the authors present first-principles 3D simulations that provide essential information for the FRB models based on shocks: the emission efficiency, spectrum, and polarization.
Abstract: Relativistic magnetized shocks are a natural source of coherent emission, offering a plausible radiative mechanism for Fast Radio Bursts (FRBs). We present first-principles 3D simulations that provide essential information for the FRB models based on shocks: the emission efficiency, spectrum, and polarization. The simulated shock propagates in an $e^\pm$ plasma with magnetization $\sigma>1$. The measured fraction of shock energy converted to coherent radiation is $\simeq 10^{-3} \, \sigma^{-1}$, and the energy-carrying wavenumber of the wave spectrum is $\simeq 4 \,\omega_{\rm c}/c$, where $\omega_{\rm c}$ is the upstream gyrofrequency. The ratio of the O-mode and X-mode energy fluxes emitted by the shock is $\simeq 0.4\,\sigma^{-1}$. The dominance of the X-mode at $\sigma\gg 1$ is particularly strong, approaching 100% in the spectral band around $2\,\omega_{\rm c}$. We also provide a detailed description of the emission mechanism for both X- and O-modes.

25 citations

Journal ArticleDOI
TL;DR: The mechanism that produces fast radio burst (FRB) emission is poorly understood as discussed by the authors , and targeted monitoring of repeating FRB sources provides the opportunity to fully characterize the emission properties in a manner impossible with one-off bursts.
Abstract: The mechanism that produces fast radio burst (FRB) emission is poorly understood. Targeted monitoring of repeating FRB sources provides the opportunity to fully characterize the emission properties in a manner impossible with one-off bursts. Here, we report observations of the source of FRB 20201124A, with the Australian Square Kilometre Array Pathfinder (ASKAP) and the ultra-wideband low (UWL) receiver at the Parkes 64-m radio telescope (Murriyang). The source entered a period of emitting bright bursts during early 2021 April. We have detected 16 bursts from this source. One of the bursts detected with ASKAP is the brightest burst ever observed from a repeating FRB source with an inferred fluence of $640\pm70$ Jy ms. Of the five bursts detected with the Parkes UWL, none display any emission in the range 1.1--4 GHz. All UWL bursts are highly polarized, with their Faraday rotation measures (RMs) showing apparent variations. We obtain an average RM of $-614$ rad m$^{-2}$ for this FRB source with a standard deviation of $16$ rad m$^{-2}$ in the UWL bursts. In one of the UWL bursts, we see evidence of significant circularly polarized emission with a fractional extent of $47\pm1$ per cent. Such a high degree of circular polarization has never been seen before in bursts from repeating FRB sources. We also see evidence for significant variation in the linear polarization position angle in the pulse profile of this UWL repeat burst. Models for repeat burst emission will need to account for the increasing diversity in the burst polarization properties.

20 citations

Journal ArticleDOI
TL;DR: In this article , a family of model invoking coherent inverse Compton scattering (ICS) of bunched particles that may operate within or just outside of the magnetosphere of a flaring magnetar was proposed.
Abstract: The extremely high brightness temperature of fast radio bursts (FRBs) requires that their emission mechanism must be "coherent", either through concerted particle emission by bunches or through an exponential growth of a plasma wave mode or radiation amplitude via certain maser mechanisms. The bunching mechanism has been mostly discussed within the context of curvature radiation or cyclotron/synchrotron radiation. Here we propose a family of model invoking coherent inverse Compton scattering (ICS) of bunched particles that may operate within or just outside of the magnetosphere of a flaring magnetar. Crustal oscillations during the flaring event may excite low-frequency electromagnetic waves near the magnetar surface. The X-mode of these waves could penetrate through the magnetosphere. Bunched relativistic particles in the charge starved region inside the magnetosphere or in the current sheet outside of the magnetosphere would upscatter these low-frequency waves to produce GHz emission to power FRBs. The ICS mechanism has a much larger emission power for individual electrons than curvature radiation. This greatly reduces the required degree of coherence in bunches, alleviating several criticisms to the bunching mechanism raised in the context of curvature radiation. The emission is $\sim 100\%$ linearly polarized (with the possibility of developing circular polarization) with a constant or varying polarization angle across each burst. The mechanism can account for a narrow-band spectrum and a frequency downdrifting pattern, as commonly observed in repeating FRBs.

17 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it is argued that a convective dynamo can also generate a very strong dipole field after the merger of a neutron star binary, but only if the merged star survives for as long as about 10-100 ms.
Abstract: It is proposed that the main observational signature of magnetars, high-field neutron stars, is gamma-ray bursts powered by their vast reservoirs of magnetic energy. If they acquire large recoils, most magnetars are unbound from the Galaxy or reside in an extended, weakly bound Galactic corona. There is evidence that the soft gamma repeaters are young magnetars. It is argued that a convective dynamo can also generate a very strong dipole field after the merger of a neutron star binary, but only if the merged star survives for as long as about 10-100 ms. Several mechanisms which could impart a large recoil to these stars at birth, sufficient to escape from the Galactic disk, are discussed.

2,482 citations


"Emission Mechanisms of Fast Radio B..." refers background in this paper

  • ...The notion of magnetars was introduced to astrophysics by Duncan and Thompson [53,54], who predicted that ultrastrong magnetic fields could be generated in proto-neutron stars, and demonstrated that the decay of this field could feed soft gamma repeaters (for a recent review of magnetars, see [55])....

    [...]

Journal ArticleDOI
02 Nov 2007-Science
TL;DR: A 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud is found, which implies that it was a singular event such as a supernova or coalescence of relativistic objects.
Abstract: Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3 degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.

1,644 citations

Journal ArticleDOI

1,537 citations


"Emission Mechanisms of Fast Radio B..." refers background in this paper

  • ...The notion of magnetars was introduced to astrophysics by Duncan and Thompson [53,54], who predicted that ultrastrong magnetic fields could be generated in proto-neutron stars, and demonstrated that the decay of this field could feed soft gamma repeaters (for a recent review of magnetars, see [55])....

    [...]

Book
01 Jan 1964
TL;DR: In this paper, an open-diagram technique is introduced which simplifies the calculation of absorptive parts of the conductivity tensor for long-wavelength electromagnetic waves in uniform, weakly interacting plasmas near equilibrium in the absence of external magnetic fields.
Abstract: Green's function techniques are used to treat the propagation of electromagnetic waves in uniform, weakly interacting plasmas near equilibrium in the absence of external magnetic fields. The frequency and the damping of electromagnetic waves in a medium are related to the local complex conductivity tensor, which is calculated by the diagrammatic techniques of modern field theory. Physical quantities are calculated in terms of a consistent many-particle perturbation expansion in powers of a (weak) coupling parameter. An open-diagram technique is introduced which simplifies the calculation of absorptive parts. For longwavelength longitudinal waves (i.e., electron plasma oscillations) it is found that the main absorption mechanism in the electron-ion plasma is the two-particle collision process appropriately corrected for collective effects and not the one-particle (or Landau) damping process. Electron-ion collisions produce a damping effect which remains finite for long wavelengths. The effect of electron-electron collisions vanishes in this limit. The absorption of transverse radiation is also considered; calculations for the electron-ion plasma are in essential agreement with the recent work of Dawson and Oberman. The results for the absorptive part of the conductivity tensor for long-wavelength electromagnetic waves in a plasma where the phase velocity au/k is much greater than the rms particle velocity is for the electron-ion plasma: O„O,~kgb C, ( )

1,428 citations

Related Papers (5)