scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Empirical Study on Applications of Data Mining Techniques in Healthcare

28 Feb 2006-Journal of Computer Science (JOURNAL OF COMPUTER SCIENCE)-Vol. 2, Iss: 2, pp 194-200
TL;DR: The potential use of classification based data mining techniques such as Rule based, decision tree and Artificial Neural Network to massive volume of healthcare data is examined.
Abstract: The healthcare environment is generally perceived as being ‘information rich’ yet ‘knowledge poor’. There is a wealth of data available within the healthcare systems. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. Knowledge discovery and data mining have found numerous applications in business and scientific domain. Valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, we briefly examine the potential use of classification based data mining techniques such as Rule based, decision tree and Artificial Neural Network to massive volume of healthcare data. In particular we consider a case study using classification techniques on a medical data set of diabetic patients.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2002

9,314 citations

Proceedings ArticleDOI
31 Mar 2008
TL;DR: This research has developed a prototype Intelligent Heart Disease Prediction System (IHDPS) using data mining techniques, namely, Decision Trees, Naive Bayes and Neural Network, which shows that each technique has its unique strength in realizing the objectives of the defined mining goals.
Abstract: The healthcare industry collects huge amounts of healthcare data which, unfortunately, are not ";mined"; to discover hidden information for effective decision making. Discovery of hidden patterns and relationships often goes unexploited. Advanced data mining techniques can help remedy this situation. This research has developed a prototype Intelligent Heart Disease Prediction System (IHDPS) using data mining techniques, namely, Decision Trees, Naive Bayes and Neural Network. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. IHDPS can answer complex ";what if"; queries which traditional decision support systems cannot. Using medical profiles such as age, sex, blood pressure and blood sugar it can predict the likelihood of patients getting a heart disease. It enables significant knowledge, e.g. patterns, relationships between medical factors related to heart disease, to be established. IHDPS is Web-based, user-friendly, scalable, reliable and expandable. It is implemented on the .NET platform.

572 citations

Journal ArticleDOI
TL;DR: How data mining technologies (in each area of classification, clustering, and association) have been used for a multitude of purposes, including research in the biomedical and healthcare fields are introduced.
Abstract: As a new concept that emerged in the middle of 1990's, data mining can help researchers gain both novel and deep insights and can facilitate unprecedented understanding of large biomedical datasets. Data mining can uncover new biomedical and healthcare knowledge for clinical and administrative decision making as well as generate scientific hypotheses from large experimental data, clinical databases, and/or biomedical literature. This review first introduces data mining in general (e.g., the background, definition, and process of data mining), discusses the major differences between statistics and data mining and then speaks to the uniqueness of data mining in the biomedical and healthcare fields. A brief summarization of various data mining algorithms used for classification, clustering, and association as well as their respective advantages and drawbacks is also presented. Suggested guidelines on how to use data mining algorithms in each area of classification, clustering, and association are offered along with three examples of how data mining has been used in the healthcare industry. Given the successful application of data mining by health related organizations that has helped to predict health insurance fraud and under-diagnosed patients, and identify and classify at-risk people in terms of health with the goal of reducing healthcare cost, we introduce how data mining technologies (in each area of classification, clustering, and association) have been used for a multitude of purposes, including research in the biomedical and healthcare fields. A discussion of the technologies available to enable the prediction of healthcare costs (including length of hospital stay), disease diagnosis and prognosis, and the discovery of hidden biomedical and healthcare patterns from related databases is offered along with a discussion of the use of data mining to discover such relationships as those between health conditions and a disease, relationships among diseases, and relationships among drugs. The article concludes with a discussion of the problems that hamper the clinical use of data mining by health professionals.

486 citations

Journal ArticleDOI
19 Feb 2019-PLOS ONE
TL;DR: A seminal review of the applications of artificial neural networks to health care organizational decision-making and identifies key characteristics and drivers for market uptake of ANN for health care Organizations to guide further adoption of this technique.
Abstract: Health care organizations are leveraging machine-learning techniques, such as artificial neural networks (ANN), to improve delivery of care at a reduced cost. Applications of ANN to diagnosis are well-known; however, ANN are increasingly used to inform health care management decisions. We provide a seminal review of the applications of ANN to health care organizational decision-making. We screened 3,397 articles from six databases with coverage of Health Administration, Computer Science and Business Administration. We extracted study characteristics, aim, methodology and context (including level of analysis) from 80 articles meeting inclusion criteria. Articles were published from 1997–2018 and originated from 24 countries, with a plurality of papers (26 articles) published by authors from the United States. Types of ANN used included ANN (36 articles), feed-forward networks (25 articles), or hybrid models (23 articles); reported accuracy varied from 50% to 100%. The majority of ANN informed decision-making at the micro level (61 articles), between patients and health care providers. Fewer ANN were deployed for intra-organizational (meso- level, 29 articles) and system, policy or inter-organizational (macro- level, 10 articles) decision-making. Our review identifies key characteristics and drivers for market uptake of ANN for health care organizational decision-making to guide further adoption of this technique.

290 citations

01 Jan 2010
TL;DR: The potential use of classification based data mining techniques such as Rule based, Decision tree, Naive Bayes and Artificial Neural Network to massive volume of healthcare data is examined.
Abstract: The healthcare environment is generally perceived as being 'information rich' yet 'knowledge poor'. There is a wealth of data available within the healthcare systems. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. Knowledge discovery and data mining have found numerous applications in business and scientific domain. Valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, we briefly examine the potential use of classification based data mining techniques such as Rule based, Decision tree, Naive Bayes and Artificial Neural Network to massive volume of healthcare data. The healthcare industry collects huge amounts of healthcare data which, unfortunately, are not "mined" to discover hidden information. For data preprocessing and effective decision making One Dependency Augmented Naive Bayes classifier (ODANB) and naive credal classifier 2 (NCC2) are used. This is an extension of naive Bayes to imprecise probabilities that aims at delivering robust classifications also when dealing with small or incomplete data sets. Discovery of hidden patterns and relationships often goes unexploited. Using medical profiles such as age, sex, blood pressure and blood sugar it can predict the likelihood of patients getting a heart disease. It enables significant knowledge, e.g. patterns, relationships between medical factors related to heart disease, to be established.

279 citations

References
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

01 Jan 2002

9,314 citations


"Empirical Study on Applications of ..." refers background in this paper

  • ...regression trees, are the common implementation of induction modeling([5])....

    [...]

  • ...197 values match the instances attribute values, until the instance reaches a leaf node, whose class label is then assigned to the instance([5])....

    [...]

Journal ArticleDOI
01 Mar 1996
TL;DR: The article discusses the motivations behind the development of ANNs and describes the basic biological neuron and the artificial computational model, and outlines network architectures and learning processes, and presents some of the most commonly used ANN models.
Abstract: Artificial neural nets (ANNs) are massively parallel systems with large numbers of interconnected simple processors. The article discusses the motivations behind the development of ANNs and describes the basic biological neuron and the artificial computational model. It outlines network architectures and learning processes, and presents some of the most commonly used ANN models. It concludes with character recognition, a successful ANN application.

4,281 citations

Book
30 Aug 2004
TL;DR: artificial neural networks, artificial neural networks , مرکز فناوری اطلاعات و اصاع رسانی, کδاوρزی
Abstract: artificial neural networks , artificial neural networks , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

2,254 citations

Journal ArticleDOI
TL;DR: After a decade of fundamental interdisciplinary research in machine learning, the spadework in this field has been done; the 1990s should see the widespread exploitation of knowledge discovery as an aid to assembling knowledge bases.
Abstract: After a decade of fundamental interdisciplinary research in machine learning, the spadework in this field has been done; the 1990s should see the widespread exploitation of knowledge discovery as an aid to assembling knowledge bases. The contributors to the AAAI Press book Knowledge Discovery in Databases were excited at the potential benefits of this research. The editors hope that some of this excitement will communicate itself to "AI Magazine readers of this article.

1,332 citations


"Empirical Study on Applications of ..." refers background in this paper

  • ...A formal definition of Knowledge discovery in databases is given as follows: “Data mining is the non trivial extraction of implicit previously unknown and potentially useful information about data”([1])....

    [...]