scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Emulating DC constant power load: a robust sliding mode control approach

13 Apr 2017-International Journal of Electronics (Taylor & Francis)-Vol. 104, Iss: 9, pp 1447-1464
TL;DR: In this article, an emulation of a programmable power electronic, constant power load (CPL) using a dc/dc step-up (boost) converter is presented, which is controlled by a robust sliding mode controller (SMC).
Abstract: This article presents emulation of a programmable power electronic, constant power load (CPL) using a dc/dc step-up (boost) converter. The converter is controlled by a robust sliding mode controller (SMC). A novel switching surface is proposed to ensure a required power sunk by the converter. The proposed dc CPL is simple in design, has fast dynamic response and high accuracy, and offers an inexpensive alternative to study converters for cascaded dc distribution power system applications. Furthermore, the proposed CPL is sufficiently robust against the input voltage variations. A laboratory prototype of the proposed dc CPL has been developed and validated with SMC realised through OPAL-RT platform. The capability of the proposed dc CPL is confirmed via experimentations in varied scenarios.
Citations
More filters
Journal ArticleDOI
TL;DR: The boost converter dynamics is redefined in terms of new state variables to facilitate the use of a disturbance observer that can estimate matched and unmatched disturbances and a sliding surface is proposed to enable tracking and regulation of output voltage without requiring measurement of input voltage and load current.
Abstract: In this paper, two control schemes for boost converters affected by uncertainties in input voltage and load are proposed. The boost converter dynamics is redefined in terms of new state variables t...

3 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper focuses on the primal version of the new algorithm, an algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints, which applies sequential quadratic programming techniques to a sequence of barrier problems.
Abstract: An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. This framework permits primal and primal-dual steps, but the paper focuses on the primal version of the new algorithm. An analysis of the convergence properties of this method is presented.

1,514 citations

Journal ArticleDOI
TL;DR: Sliding-mode and feedback linearization techniques along with large-signal phase plane analysis are presented as methods to analyze, control, and stabilize automotive converters/systems operating with CPLs.
Abstract: Power electronic converters and electric motor drives are being put into use at an increasingly rapid rate in advanced automobiles. However, the new advanced automotive electrical systems employ multivoltage level hybrid ac and dc as well as electromechanical systems that have unique characteristics, dynamics, and stability problems that are not well understood due to the nonlinearity and time dependency of converters and because of their constant power characteristics. The purpose of this paper is to present an assessment of the negative impedance instability concept of the constant power loads (CPLs) in automotive power systems. The main focus of this paper is to analyze and propose design criteria of controllers for automotive converters/systems operating with CPLs. The proposed method is to devise a new comprehensive approach to the applications of power electronic converters and motor drives in advanced automotive systems. Sliding-mode and feedback linearization techniques along with large-signal phase plane analysis are presented as methods to analyze, control, and stabilize automotive converters/systems with CPLs

813 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate passive damping as a general method to stabilize power systems with CPLs, using a representative system model consisting of a voltage source, an LC filter, and an ideal CPL, and demonstrate that a CPL system can be stabilized by a simple damping circuit added to one of the filter elements.
Abstract: This paper addresses stability problems in power systems with loads that exhibit constant-power behavior. Instability may occur in such systems due to the negative incremental impedance of constant-power loads (CPLs). Existing approaches to stabilizing such systems require modification of the source and/or the load control characteristics, or isolating the CPL from the rest of the system by additional active devices, which are difficult to implement and often conflict with other system requirements such as control bandwidth, size, weight, and cost. In this paper, we investigate passive damping as a general method to stabilize power systems with CPL. Using a representative system model consisting of a voltage source, an LC filter, and an ideal CPL, we demonstrate that a CPL system can be stabilized by a simple passive damping circuit added to one of the filter elements. Three different damping methods are considered and analytical models are developed for each method to define damping parameters required for stabilizing the system. Time- and frequency-domain measurements from an experimental system are presented to validate the methods.

444 citations

Journal ArticleDOI
TL;DR: The implementation of novel active-damping techniques on dc/dc converters has been shown and the proposed active- damping method is used to overcome the negative impedance instability problem caused by the CPLs.
Abstract: Multi-converter power electronic systems exist in land, sea, air, and space vehicles. In these systems, load converters exhibit constant power load (CPL) behavior for the feeder converters and tend to destabilize the system. In this paper, the implementation of novel active-damping techniques on dc/dc converters has been shown. Moreover, the proposed active-damping method is used to overcome the negative impedance instability problem caused by the CPLs. The effectiveness of the new proposed approach has been verified by PSpice simulations and experimental results.

422 citations


Additional excerpts

  • ...…& Millar, 2004; Emadi, Khaligh, Rivetta, & Williamson, 2006; Liutanakul, Awan, Pierfederici, Nahid-Mobarakeh, & Meibody-Tabar, 2010; Magne, Nahid-Mobarakeh, & Pierfederci, 2014; Marx, Magne, NahidMobarakeh, Pierfederici, & Davat, 2012; Rahimi, Williamson, & Emadi, 2010; Rahimi & Emadi, 2009)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present tools allowing large signal stability analysis of a dc power system, which allows estimation of the domain of attraction of the system operating point, and the impact of the load dynamics on stability is also studied.
Abstract: Electric motor drives and power electronic converters have become increasingly common in advanced power systems. Passive LC filters are used in these systems to reduce the power ripples. These filters are usually poorly damped for reducing the losses as well as the size/weight and the cost of the system. This leads to instability phenomena if the load power exceeds a power limit depending on the filter parameters. The purpose of this paper is to present tools allowing large signal stability analysis of a dc power system. These tools allow estimation of the domain of attraction of the system operating point. It will be shown that this large signal stability analysis gives useful hints on the design of the system to optimize the stability criteria for constant and variable power loads. The impact of the load dynamics on stability is also studied. An electric drive connected to a dc power supply through a poorly damped LC filter is used as a case study. The simulations and the experimentations confirm the analytical results.

283 citations