scispace - formally typeset
Open AccessJournal ArticleDOI

Enabling Large Intelligent Surfaces With Compressive Sensing and Deep Learning

Reads0
Chats0
TLDR
In this article, a novel LIS architecture based on sparse channel sensors is proposed, where all the LIS elements are passive except for a few elements that are connected to the baseband.
Abstract
Employing large intelligent surfaces (LISs) is a promising solution for improving the coverage and rate of future wireless systems. These surfaces comprise massive numbers of nearly-passive elements that interact with the incident signals, for example by reflecting them, in a smart way that improves the wireless system performance. Prior work focused on the design of the LIS reflection matrices assuming full channel knowledge. Estimating these channels at the LIS, however, is a key challenging problem. With the massive number of LIS elements, channel estimation or reflection beam training will be associated with (i) huge training overhead if all the LIS elements are passive (not connected to a baseband) or with (ii) prohibitive hardware complexity and power consumption if all the elements are connected to the baseband through a fully-digital or hybrid analog/digital architecture. This paper proposes efficient solutions for these problems by leveraging tools from compressive sensing and deep learning. First, a novel LIS architecture based on sparse channel sensors is proposed. In this architecture, all the LIS elements are passive except for a few elements that are active (connected to the baseband). We then develop two solutions that design the LIS reflection matrices with negligible training overhead. In the first approach, we leverage compressive sensing tools to construct the channels at all the LIS elements from the channels seen only at the active elements. In the second approach, we develop a deep-learning based solution where the LIS learns how to interact with the incident signal given the channels at the active elements, which represent the state of the environment and transmitter/receiver locations. We show that the achievable rates of the proposed solutions approach the upper bound, which assumes perfect channel knowledge, with negligible training overhead and with only a few active elements, making them promising for future LIS systems.

read more

Citations
More filters
Journal ArticleDOI

Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial

TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Posted Content

Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network

TL;DR: This article addresses the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only.
Journal ArticleDOI

Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead

TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Journal ArticleDOI

Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces

TL;DR: This paper proposes to invoke an IRS at the cell boundary of multiple cells to assist the downlink transmission to cell-edge users, whilst mitigating the inter-cell interference, which is a crucial issue in multicell communication systems.
Posted Content

Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How it Works, State of Research, and Road Ahead.

TL;DR: The emerging research field of RIS-empowered SREs is introduced; the most suitable applications of RISs in wireless networks are overviewed; an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs is presented; and the most important research issues to tackle are discussed.
References
More filters
Journal ArticleDOI

Greed is good: algorithmic results for sparse approximation

TL;DR: This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries and develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal.
Journal ArticleDOI

Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming

TL;DR: Simulation results demonstrate that an IRS-aided single-cell wireless system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains.
Book

Deep Learning: Methods and Applications

Li Deng, +1 more
TL;DR: This monograph provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning.
Journal ArticleDOI

Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems

TL;DR: An adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel is developed and a new hybrid analog/digital precoding algorithm is proposed that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions.
Related Papers (5)