scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Endogenous Superoxide Dismutase Levels Regulate Iron-Dependent Hydroxyl Radical Formation in Escherichia coli Exposed to Hydrogen Peroxide

01 Feb 1998-Journal of Bacteriology (American Society for Microbiology)-Vol. 180, Iss: 3, pp 622-625
TL;DR: The hypothesis that a resulting increase in .OH formation generated by Fenton chemistry is responsible for the observed enhancement of DNA damage and the increased susceptibility to H2O2-mediated killing seen in these mutants lacking SOD is supported.
Abstract: Aerobic organisms contain antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, to protect them from both direct and indirect effects of reactive oxygen species, such as O2.- and H2O2. Previous work by others has shown that Escherichia coli mutants lacking SOD not only are more susceptible to DNA damage and killing by H2O2 but also contain larger pools of intracellular free iron. The present study investigated if SOD-deficient E. coli cells are exposed to increased levels of hydroxyl radical (.OH) as a consequence of the reaction of H2O2 with this increased iron pool. When the parental E. coli strain AB1157 was exposed to H2O2 in the presence of an alpha-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN)-ethanol spin-trapping system, the 4-POBN-.CH(CH3)OH spin adduct was detectable by electron paramagnetic resonance (EPR) spectroscopy, indicating .OH production. When the isogenic E. coli mutant JI132, lacking both Fe- and Mn-containing SODs, was exposed to H2O2 in a similar manner, the magnitude of .OH spin trapped was significantly greater than with the control strain. Preincubation of the bacteria with the iron chelator deferoxamine markedly inhibited the magnitude of .OH spin trapped. Exogenous SOD failed to inhibit .OH formation, indicating the need for intracellular SOD. Redox-active iron, defined as EPR-detectable ascorbyl radical, was greater in the SOD-deficient strain than in the control strain. These studies (i) extend recent data from others demonstrating increased levels of iron in E. coli SOD mutants and (ii) support the hypothesis that a resulting increase in .OH formation generated by Fenton chemistry is responsible for the observed enhancement of DNA damage and the increased susceptibility to H2O2-mediated killing seen in these mutants lacking SOD.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The data show that MnSOD protects cells against hydrogen peroxide by removing O2·− and preventing the redox cycling of iron and is the first report of a sodA from S. thermophilus being expressed in other lactic acid bacteria.
Abstract: In living organisms, exposure to oxygen provokes oxidative stress. A widespread mechanism for protection against oxidative stress is provided by the antioxidant enzymes: superoxide dismutases (SODs) and hydroperoxidases. Generally, these enzymes are not present in Lactobacillus spp. In this study, we examined the potential advantages of providing a heterologous SOD to some of the intestinal lactobacilli. Thus, the gene encoding the manganese-containing SOD (sodA) was cloned from Streptococcus thermophilus AO54 and expressed in four intestinal lactobacilli. A 1.2-kb PCR product containing the sodA gene was cloned into the shuttle vector pTRK563, to yield pSodA, which was functionally expressed and complemented an Escherichia coli strain deficient in Mn and FeSODs. The plasmid, pSodA, was subsequently introduced and expressed in Lactobacillus gasseri NCK334, Lactobacillus johnsonii NCK89, Lactobacillus acidophilus NCK56, and Lactobacillus reuteri NCK932. Molecular and biochemical analyses confirmed the presence of the gene (sodA) and the expression of an active gene product (MnSOD) in these strains of lactobacilli. The specific activities of MnSOD were 6.7, 3.8, 5.8, and 60.7 U/mg of protein for L. gasseri, L. johnsonii, L. acidophilus, and L. reuteri, respectively. The expression of S. thermophilus MnSOD in L. gasseri and L. acidophilus provided protection against hydrogen peroxide stress. The data show that MnSOD protects cells against hydrogen peroxide by removing O2·− and preventing the redox cycling of iron. To our best knowledge, this is the first report of a sodA from S. thermophilus being expressed in other lactic acid bacteria.

119 citations


Additional excerpts

  • ...coli cells exposed to hydrogen peroxide (39)....

    [...]

Journal ArticleDOI
TL;DR: This study has identified sodB as an important F. tularensis virulence factor and was significantly attenuated for virulence in mice.
Abstract: A Francisella tularensis live vaccine strain mutant (sodB(Ft)) with reduced Fe-superoxide dismutase gene expression was generated and found to exhibit decreased sodB activity and increased sensitivity to redox cycling compounds compared to wild-type bacteria. The sodB(Ft) mutant also was significantly attenuated for virulence in mice. Thus, this study has identified sodB as an important F. tularensis virulence factor.

113 citations


Cites background from "Endogenous Superoxide Dismutase Lev..."

  • ...cycling compounds, and mutants that lack cytoplasmic SODs contain almost 10 times the amount of Fe(2) found in wild-type cells (24)....

    [...]

Journal ArticleDOI
TL;DR: The ability of inorganic selenium compounds, such as selenite, and selenate, to prevent damage from reactive oxygen Species as well as their ability to promote cell death by reactive oxygen species generation is discussed.
Abstract: Inorganic selenium and oxo-sulfur compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This review discusses the ability of inorganic selenium compounds, such as selenite, and selenate, to prevent damage from reactive oxygen species as well as their ability to promote cell death by reactive oxygen species generation. Oxo-sulfur and selenium compounds, such as allicin, dimethyl sulfone, methionine sulfoxide, and methylselenenic acid also have similar abilities to act as both antioxidants and pro-oxidants, but the mechanisms for these behaviors are distinctly different from those of the inorganic selenium compounds. The antioxidant and pro-oxidant properties of these small-molecule sulfur and selenium compounds are extremely complex and often greatly depend on experimental conditions, which may explain contradictory literature reports of their efficacy.

99 citations


Cites background from "Endogenous Superoxide Dismutase Lev..."

  • ...reactions, results in the formation of secondary ROS such as hydrogen peroxide (H2O2; Reaction 3) and the hydroxyl radical (OH; Reaction 4) [1, 4, 5, 17]....

    [...]

  • ...The primary ROS formed as a byproduct of this respiratory process is the superoxide anion radical (O2 ), generated when molecular oxygen gains an electron from either the mitochondrial electron transport chain (Reaction 1) or as a result of UVirradiation (Reaction 2) [1, 4, 5, 17]....

    [...]

  • ...H2O2 reacts with redox-active metal ions to generate hydroxyl radical [5, 17, 18, 20, 28]....

    [...]

  • ...reduction of molecular oxygen (O2) to produce water (H2O) via metabolic processes catalyzed by cytochrome oxidase in biological systems [5, 17]....

    [...]

Journal ArticleDOI
TL;DR: It is suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators and may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach.
Abstract: Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2′-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach.

76 citations


Cites background from "Endogenous Superoxide Dismutase Lev..."

  • ...Previous studies have shown that the endogenous SOD levels control the iron-dependent HO formation when cells are exposed to hydrogen peroxide (13, 14, 42) or such formation is due to an iron overload as in the Fur mutant of E....

    [...]

Journal ArticleDOI
H Le Pape1, F Solano-Serena1, P Contini, C Devillers, A Maftah1, P Leprat1 
TL;DR: An activated carbon fibre supporting silver was tested for its antibacterial capacity against Escherichia coli and revealed a strong expression of oxidative stress genes, suggesting that generated bactericidal species were short lifespan.

72 citations

References
More filters
Book
13 Jun 1985
TL;DR: 1. Oxygen is a toxic gas - an introduction to oxygen toxicity and reactive species, and the chemistry of free radicals and related 'reactive species'
Abstract: 1. Oxygen is a toxic gas - an introductionto oxygen toxicity and reactive species 2. The chemistry of free radicals and related 'reactive species' 3. Antioxidant defences Endogenous and Diet Derived 4. Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death 5. Measurement of reactive species 6. Reactive species can pose special problems needing special solutions. Some examples. 7. Reactive species can be useful some more examples 8. Reactive species can be poisonous: their role in toxicology 9. Reactive species and disease: fact, fiction or filibuster? 10. Ageing, nutrition, disease, and therapy: A role for antioxidants?

21,528 citations


"Endogenous Superoxide Dismutase Lev..." refers background in this paper

  • ...rapidly reacts with itself (dismutes) to form H2O2 (7)....

    [...]

  • ...Although the aerobic metabolism of bacteria optimally results in the near simultaneous four-electron reduction of O2 to H2O, a variable percentage of O2 reduction occurs initially via either one-electron reduction of O2 to superoxide (O2 ) or divalent reduction to H2O2 (7)....

    [...]

Journal ArticleDOI
03 Jun 1988-Science
TL;DR: It is proposed that the cell may also decrease such toxicity by diminishing available NAD(P)H and by utilizing oxygen itself to scavenge active free radicals into superoxide, which is then destroyed by superoxide dismutase.
Abstract: A major portion of the toxicity of hydrogen peroxide in Escherichia coli is attributed to DNA damage mediated by a Fenton reaction that generates active forms of hydroxyl radicals from hydrogen peroxide, DNA-bound iron, and a constant source of reducing equivalents. Kinetic peculiarities of DNA damage production by hydrogen peroxide in vivo can be reproduced by including DNA in an in vitro Fenton reaction system in which iron catalyzes the univalent reduction of hydrogen peroxide by the reduced form of nicotinamide adenine dinucleotide (NADH). To minimize the toxicity of oxygen radicals, the cell utilizes scavengers of these radicals and DNA repair enzymes. On the basis of observations with the model system, it is proposed that the cell may also decrease such toxicity by diminishing available NAD(P)H and by utilizing oxygen itself to scavenge active free radicals into superoxide, which is then destroyed by superoxide dismutase.

1,997 citations


"Endogenous Superoxide Dismutase Lev..." refers background in this paper

  • ...Pretreatment of the JI132 (SOD-deficient) bacteria with DFO greatly reduced the magnitude of OH generation, confirming that it arose as a consequence of Fenton chemistry, as iron bound to DFO is no longer available for this redox chemistry (10)....

    [...]

Journal ArticleDOI
TL;DR: Aerotolerant anaerobes, which survive exposure to air and metabolize oxygen to a limited extent but do not contain cytochrome systems, were found to be devoid of catalase activity but did exhibit superoxide dismutase activity.
Abstract: The distribution of catalase and superoxide dismutase has been examined in various micro-organisms. Strict anaerobes exhibited no superoxide dismutase and, generally, no catalase activity. All aerobic organisms containing cytochrome systems were found to contain both superoxide dismutase and catalase. Aerotolerant anaerobes, which survive exposure to air and metabolize oxygen to a limited extent but do not contain cytochrome systems, were found to be devoid of catalase activity but did exhibit superoxide dismutase activity. This distribution is consistent with the proposal that the prime physiological function of superoxide dismutase is protection of oxygen-metabolizing organisms against the potentially detrimental effects of the superoxide free radical, a biologically produced intermediate resulting from the univalent reduction of molecular oxygen.

974 citations


"Endogenous Superoxide Dismutase Lev..." refers background in this paper

  • ...Most bacteria, including Escherichia coli, contain superoxide dismutase (SOD) and catalase as means of eliminating O2 z2 and H2O2, respectively (16, 17)....

    [...]

Journal ArticleDOI
TL;DR: This presentation discusses the role of catalytic metals in free radical-mediated oxidations, ascorbate as both a pro-oxidant and an antioxidant, use of asCorbate to determine adventitious catalytic metal concentrations, and uses of ascorBate radical as a marker of oxidative stress.
Abstract: Trace levels of transition metals can participate in the metal-catalyzed Haber-Weiss reaction (superoxide-driven Fenton reaction) as well as catalyze the oxidation of ascorbate. Generally ascorbate is thought of as an excellent reducing agent; it is able to serve as a donor antioxidant in free radical-mediated oxidation processes. However, as a reducing agent it is also able to reduce redox-active metals such as copper and iron, thereby increasing the pro-oxidant chemistry of these metals. Thus ascorbate can serve as both a pro-oxidant and an antioxidant. In general, at low ascorbate concentrations, ascorbate is prone to be a pro-oxidant, and at high concentrations, it will tend to be an antioxidant. Hence there is a crossover effect. We propose that the "position" of this crossover effect is a function of the catalytic metal concentration. In this presentation, we discuss: (1) the role of catalytic metals in free radical-mediated oxidations; (2) ascorbate as both a pro-oxidant and an antioxidant; (3) catalytic metal catalysis of ascorbate oxidation; (4) use of ascorbate to determine adventitious catalytic metal concentrations; (5) use of ascorbate radical as a marker of oxidative stress; and (6) use of ascorbate and iron as free radical pro-oxidants in photodynamic therapy of cancer.

851 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the level of loose iron in severely superoxide-stressed cells greatly exceeds that of unstressed cells, and that both growth defects and DNA damage caused by superoxide ensue from its ability to damage a subset of iron-sulfur clusters.
Abstract: Superoxide promotes hydroxyl-radical formation and consequent DNA damage in cells of all types. The long-standing hypothesis that it primarily does so by delivering electrons to adventitious iron on DNA was refuted by recent studies in Escherichia coli. Alternative proposals have suggested that superoxide may accelerate oxidative DNA damage by leaching iron from storage proteins or enzymic [4Fe-4S] clusters. The released iron might then deposit on the surface of the DNA, where it could catalyze the formation of DNA oxidants using other electron donors. The latter model is affirmed by the experiments described here. Whole-cell electron paramagnetic resonance demonstrated that the level of loose iron in superoxide-stressed cells greatly exceeds that of unstressed cells. Bacterial iron storage proteins were not the major source for free iron, since superoxide also increased iron levels in mutants lacking these iron storage proteins. However, overproduction of an enzyme containing a labile [4Fe-4S] cluster dramatically increased the free iron content of cells when they were growing in air. The rates of spontaneous mutagenesis and DNA damage from exogenous H2O2 increased commensurately. It is striking that both growth defects and DNA damage caused by superoxide ensue from its ability to damage a subset of iron–sulfur clusters.

803 citations

Trending Questions (1)
How do you play sod?

Exogenous SOD failed to inhibit·OH formation, indicating the need for intracellular SOD.