scispace - formally typeset
Proceedings ArticleDOI

Energy-Efficient Air Pollution Monitoring with Optimum Duty-Cycling on a Sensor Hub

01 Feb 2018-

...read more


Citations
More filters

[...]

01 Feb 2015
TL;DR: In this article, the authors illustrate the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

29 citations

Journal ArticleDOI

[...]

TL;DR: This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications and presents a few case studies that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality.
Abstract: With the advent of Internet of Things (IoT) devices, their reconfigurability, networking, task automation, and control ability have been a boost to the evolution of traditional industries such as health-care, agriculture, power, education, and transport. However, the quantum of data produced by the IoT devices poses serious challenges on its storage, communication, computation, security, scalability, and system’s energy sustainability. To address these challenges, the concept of green sensing and communication has gained importance. This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications. Further, a few case studies are presented that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality. Challenges associated with these green techniques, various open issues, and future research directions for improving the energy efficiency of the IoT systems are also discussed.

8 citations


Cites background from "Energy-Efficient Air Pollution Moni..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: IoT data driven unique communication approaches and optimization techniques to reduce the data handling footprint, leading to communication bandwidth, cloud storage, and energy saving, without compromising the service quality are presented.
Abstract: Internet of Things (IoT) has gained tremendous popularity with the recent fast-paced technological advances in embedded programmable electronic and electro-mechanical systems, miniaturization, and their networking ability. IoT is expected to change the way of human activities by extensively networked monitoring, automation, and control. However, widespread application of IoT is associated with numerous challenges on communication and storage requirements, energy sustainability, and security. Also, IoT data traffic as well as the service quality requirements are application-specific. Through a few practical example cases, this article presents IoT data driven unique communication approaches and optimization techniques to reduce the data handling footprint, leading to communication bandwidth, cloud storage, and energy saving, without compromising the service quality. Subsequently, it discusses newer challenges that are needed to be tackled, to make the IoT applications practically viable for their wide-ranging adoption.

4 citations


Cites background from "Energy-Efficient Air Pollution Moni..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this paper, the feasibility of using wearable low-cost pollution sensors for capturing the total exposure of commuters is analyzed by using extensive experiments carried out in the Helsinki metropolitan region, and they demonstrate that wearable sensors can capture subtle variations caused by differing routes, passenger density, location within a carriage, and other factors.
Abstract: Transit activities are a significant contributor to a person’s daily exposure to pollutants. Currently obtaining accurate information about the personal exposure of a commuter is challenging as existing solutions either have a coarse monitoring resolution that omits subtle variations in pollutant concentrations or are laborious and costly to use. We contribute by systematically analysing the feasibility of using wearable low-cost pollution sensors for capturing the total exposure of commuters. Through extensive experiments carried out in the Helsinki metropolitan region, we demonstrate that low-cost sensors can capture the overall exposure with sufficient accuracy, while at the same time providing insights into variations within transport modalities. We also demonstrate that wearable sensors can capture subtle variations caused by differing routes, passenger density, location within a carriage, and other factors. For example, we demonstrate that location within the vehicle carriage can result in up to 25 % increase in daily pollution exposure – a significant difference that existing solutions are unable to capture. Finally, we highlight the practical benefits of low-cost sensors as a pollution monitoring solution by introducing applications that are enabled by low-cost wearable sensors.

3 citations

Posted Content

[...]

13 Dec 2019
TL;DR: This article presents low-cost sensor technologies, and it survey and assess machine learning-based calibration techniques for their calibration, and presents open questions and directions for future research.
Abstract: In recent years, interest in monitoring air quality has been growing. Traditional environmental monitoring stations are very expensive, both to acquire and to maintain, therefore their deployment is generally very sparse. This is a problem when trying to generate air quality maps with a fine spatial resolution. Given the general interest in air quality monitoring, low-cost air quality sensors have become an active area of research and development. Low-cost air quality sensors can be deployed at a finer level of granularity than traditional monitoring stations. Furthermore, they can be portable and mobile. Low-cost air quality sensors, however, present some challenges: they suffer from crosssensitivities between different ambient pollutants; they can be affected by external factors such as traffic, weather changes, and human behavior; and their accuracy degrades over time. Some promising machine learning approaches can help us obtain highly accurate measurements with low-cost air quality sensors. In this article, we present low-cost sensor technologies, and we survey and assess machine learning-based calibration techniques for their calibration. We conclude by presenting open questions and directions for future research.

3 citations


Cites background from "Energy-Efficient Air Pollution Moni..."

  • [...]

  • [...]


References
More filters
Journal ArticleDOI

[...]

TL;DR: The drivers behind current rises in the use of low-cost sensors for air pollution management in cities are illustrated, while addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form But the question remains whether there is value in the less accurate data they generate This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, while addressing the major challenges for their effective implementation

469 citations


"Energy-Efficient Air Pollution Moni..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: An exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions shows that their performance varies spatially and temporally.
Abstract: The emergence of low-cost, user-friendly and very compact air pollution platforms enable observations at high spatial resolution in near-real-time and provide new opportunities to simultaneously enhance existing monitoring systems, as well as engage citizens in active environmental monitoring. This provides a whole new set of capabilities in the assessment of human exposure to air pollution. However, the data generated by these platforms are often of questionable quality. We have conducted an exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions. Our results show that their performance varies spatially and temporally, as it depends on the atmospheric composition and the meteorological conditions. Our results show that the performance varies from unit to unit, which makes it necessary to examine the data quality of each node before its use. In general, guidance is lacking on how to test such sensor nodes and ensure adequate performance prior to marketing these platforms. We have implemented and tested diverse metrics in order to assess if the sensor can be employed for applications that require high accuracy (i.e., to meet the Data Quality Objectives defined in air quality legislation, epidemiological studies) or lower accuracy (i.e., to represent the pollution level on a coarse scale, for purposes such as awareness raising). Data quality is a pertinent concern, especially in citizen science applications, where citizens are collecting and interpreting the data. In general, while low-cost platforms present low accuracy for regulatory or health purposes they can provide relative and aggregated information about the observed air quality.

408 citations


"Energy-Efficient Air Pollution Moni..." refers background in this paper

  • [...]

Proceedings ArticleDOI

[...]

11 Aug 2013
TL;DR: A vehicular-based mobile approach for measuring fine-grained air quality in real-time and two cost effective data farming models -- one that can be deployed on public transportation and the second a personal sensing device are proposed.
Abstract: Traditionally, pollution measurements are performed using expensive equipment at fixed locations or dedicated mobile equipment laboratories. This is a coarse-grained and expensive approach where the pollution measurements are few and far in-between. In this paper, we present a vehicular-based mobile approach for measuring fine-grained air quality in real-time. We propose two cost effective data farming models -- one that can be deployed on public transportation and the second a personal sensing device. We present preliminary prototypes and discuss implementation challenges and early experiments.

291 citations


"Energy-Efficient Air Pollution Moni..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: This paper designs a data gathering optimization algorithm for dynamic sensing and routing (DoSR), and proposes a distributed sensing rate and routing control (DSR2C) algorithm to jointly optimize data sensing and data transmission, while guaranteeing network fairness.
Abstract: In rechargeable sensor networks (RSNs), energy harvested by sensors should be carefully allocated for data sensing and data transmission to optimize data gathering due to time-varying renewable energy arrival and limited battery capacity. Moreover, the dynamic feature of network topology should be taken into account, since it can affect the data transmission. In this paper, we strive to optimize data gathering in terms of network utility by jointly considering data sensing and data transmission. To this end, we design a data gathering optimization algorithm for dynamic sensing and routing (DoSR), which consists of two parts. In the first part, we design a balanced energy allocation scheme (BEAS) for each sensor to manage its energy use, which is proven to meet four requirements raised by practical scenarios. Then in the second part, we propose a distributed sensing rate and routing control (DSR2C) algorithm to jointly optimize data sensing and data transmission, while guaranteeing network fairness. In DSR2C, each sensor can adaptively adjust its transmit energy consumption during network operation according to the amount of available energy, and select the optimal sensing rate and routing, which can efficiently improve data gathering. Furthermore, since recomputing the optimal data sensing and routing strategies upon change of energy allocation will bring huge communications for information exchange and computation, we propose an improved BEAS to manage the energy allocation in the dynamic environments and a topology control scheme to reduce computational complexity. Extensive simulations are performed to demonstrate the efficiency of the proposed algorithms in comparison with existing algorithms.

218 citations

Journal ArticleDOI

[...]

TL;DR: The root causes of energy overhead in continuous sensing are examined and it is shown that energy-efficient continuous sensing can be achieved through proper system design.
Abstract: Today's mobile phones come with a rich set of built-in sensors such as accelerometers, ambient light sensors, compasses, and pressure sensors, which can measure various phenomena on and around the phone. Gathering user context such as user activity, geographic location, and location type requires continuous sampling of sensor data. However, such sampling shortens a phone's battery life because of the associated energy overhead. This article examines the root causes of this energy overhead and shows that energy-efficient continuous sensing can be achieved through proper system design.

175 citations


"Energy-Efficient Air Pollution Moni..." refers background in this paper

  • [...]