scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Energy harvesting from a piezoelectric biomimetic fish tail

01 Feb 2016-Renewable Energy (Elsevier BV)-Vol. 86, pp 449-458
TL;DR: In this article, the authors investigate the feasibility of underwater energy harvesting from the vibrations of a biomimetic fish tail though piezoelectric materials, and propose and experimentally validate a modeling framework to predict the underwater vibration of the tail and the associated response.
About: This article is published in Renewable Energy.The article was published on 2016-02-01 and is currently open access. It has received 76 citations till now. The article focuses on the topics: Energy harvesting.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review on the state-of-the-art of piezoelectric energy harvesting is presented in this paper, where the authors present the broad spectrum of applications of piezolectric materials for clean power supply to wireless electronics in diverse fields.

418 citations

Journal ArticleDOI
TL;DR: In this paper, a multimodal hybrid bridge energy harvester (HBEH) using combined piezoelectric and electromagnetic conversion is reported, which is capable of converting bridge vibrations and ambient wind energy into useful electrical energy to operate wireless sensor nodes (WSNs) for health monitoring of bridges.

152 citations

Journal ArticleDOI
Kangqi Fan1, Yiwei Zhang1, Haiyan Liu, Meiling Cai1, Qinxue Tan1 
TL;DR: In this paper, a two-degree-of-freedom (2-DOF) electromagnetic energy harvester (EMEH) was proposed, which is realized by magnetically levitating a 1DOF EMEH in a cylindrical housing.

92 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of abrupt magnetic flux density change on the electric outputs of electromagnetic energy harvesters, e.g., open-circuit voltage, power density and charging rates.

79 citations

Proceedings ArticleDOI
19 Aug 2019
TL;DR: Piezo-Acoustic Backscatter (PAB), the first technology that enables backscatter networking in underwater environments, is presented and can be used in ocean exploration, marine life sensing, and underwater climate change monitoring.
Abstract: We present Piezo-Acoustic Backscatter (PAB), the first technology that enables backscatter networking in underwater environments. PAB relies on the piezoelectric effect to enable underwater communication and sensing at near-zero power. Its architecture is inspired by radio backscatter which works well in air but cannot work well underwater due to the exponential attenuation of radio signals in water. PAB nodes harvest energy from underwater acoustic signals using piezoelectric interfaces and communicate by modulating the piezoelectric impedance. Our design introduces innovations that enable concurrent multiple access through circuit-based frequency tuning of backscatter modulation and a MAC that exploits the properties of PAB nodes to deliver higher network throughput and decode network collisions. We built a prototype of our design using custom-designed, mechanically fabricated transducers and an end-to-end battery-free hardware implementation. We tested our nodes in large experimental water tanks at the MIT Sea Grant. Our results demonstrate single-link throughputs up to 3 kbps and power-up ranges up to 10 m. Finally, we show how our design can be used to measure acidity, temperature, and pressure. Looking ahead, the system can be used in ocean exploration, marine life sensing, and underwater climate change monitoring.

79 citations


Cites background from "Energy harvesting from a piezoelect..."

  • ...In particular, since the piezoelectric effect can transform mechanical energy to electrical energy, it has been used to harvest energy from different kinds of underwater movements, including those resulting from swimmer body movements [20], fish movements [14, 40], water currents [70, 78], motor vibrations [39], and even ambient noise [65]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations

Book
04 Apr 2011
TL;DR: In this article, the authors present a mathematical model of a piezoelectric energy harvesting system with a two-segment cantilever and a single-mode Euler-Bernoulli model.
Abstract: About the Authors. Preface. 1. Introduction to Piezoelectric Energy Harvesting. 1.1 Vibration-Based Energy Harvesting Using Piezoelectric Transduction. 1.2 An Examples of a Piezoelectric Energy Harvesting System. 1.3 Mathematical Modeling of Piezoelectric Energy Harvesters. 1.4 Summary of the Theory of Linear Piezoelectricity. 1.5 Outline of the Book. 2. Base Excitation Problem for Cantilevered Structures and Correction of the Lumped-Parameter Electromechanical Model. 2.1 Base Excitation Problem for the Transverse Vibrations. 2.2 Correction of the Lumped-Parameter Base Excitation Model for Transverse Vibrations. 2.3 Experimental Case Studies for Validation of the Correction Factor. 2.4 Base Excitation Problem for Longitudinal Vibrations and Correction of its Lumped-Parameter Model. 2.5 Correction Factor in the Electromechanically Coupled Lumped-Parameter Equations and a Theoretical Case Study. 2.6 Summary. 2.7 Chapter Notes. 3. Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters. 3.1 Fundamentals of the Electromechanically Coupled Distributed-Parameter Model. 3.2 Series Connection of the Piezoceramic Layers. 3.3 Parallel Connection of Piezoceramic Layers. 3.4 Equivalent Representation of the Series and the Parallel Connection Cases. 3.5 Single-Mode Electromechanical Equations for Modal Excitations. 3.6 Multi-mode and Single-Mode Electromechanical FRFs. 3.7 Theoretical Case Study. 3.8 Summary. 3.9 Chapter Notes. 4. Experimental Validation of the Analytical Solution for Bimorph Configurations. 4.1 PZT-5H Bimorph Cantilever without a Tip Mass. 4.2 PZT-5H Bimorph Cantilever with a Tip Mass. 4.3 PZT-5A Bimorph Cantilever. 4.4 Summary. 4.5 Chapter Notes. 5. Dimensionless Equations, Asymptotic Analyses, and Closed-Form Relations for Parameter Identification and Optimization. 5.1 Dimensionless Representation of the Single-Mode Electromechanical FRFs. 5.2 Asymptotic Analyses and Resonance Frequencies. 5.3 Identification of Mechanical Damping. 5.4 Identification of the Optimum Electrical Load for Resonance Excitation. 5.5 Intersection of the Voltage Asymptotes and a Simple Technique for the Experimental Identification of the Optimum Load Resistance. 5.6 Vibration Attenuation Amplification from the Short-Circuit to Open-Circuit Conditions. 5.7 Experimental Validation for a PZT-5H Bimorph Cantilever. 5.8 Summary. 5.9 Chapter Notes. 6. Approximate Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters. 6.1 Unimorph Piezoelectric Energy Harvester Configuration. 6.2 Electromechanical Euler-Bernoulli Model with Axial Deformations. 6.3 Electromechanical Rayleigh Model with Axial Deformations. 6.4 Electromechanical Timoshenko Model with Axial Deformations. 6.5 Modeling of Symmetric Configurations. 6.6 Presence of a Tip Mass in the Euler-Bernoulli, Rayleigh, and Timoshenko Models. 6.7 Comments on the Kinematically Admissible Trial Functions. 6.8 Experimental Validation of the Assumed-Modes Solution for a Bimorph Cantilever. 6.9 Experimental Validation for a Two-Segment Cantilever. 6.10 Summary. 6.11 Chapter Notes. 7. Modeling of Piezoelectric Energy Harvesting for Various Forms of Dynamic Loading. 7.1 Governing Electromechanical Equations. 7.2 Periodic Excitation. 7.3 White Noise Excitation. 7.4 Excitation Due to Moving Loads. 7.5 Local Strain Fluctuations on Large Structures. 7.6 Numerical Solution for General Transient Excitation. 7.7 Case Studies. 7.8 Summary. 7.9 Chapter Notes. 8. Modeling and Exploiting Mechanical Nonlinearities in Piezoelectric Energy Harvesting. 8.1 Perturbation Solution of the Piezoelectric Energy Harvesting Problem: the Method of Multiple Scales. 8.2 Monostable Duffing Oscillator with Piezoelectric Coupling. 8.3 Bistable Duffing Oscillator with Piezoelectric Coupling: the Piezomagnetoelastic Energy Harvester. 8.4 Experimental Performance Results of the Bistable Peizomagnetoelastic Energy Harvester. 8.5 A Bistable Plate for Piezoelectric Energy Harvesting. 8.6 Summary. 8.7 Chapter Notes. 9. Piezoelectric Energy Harvesting from Aeroelastic Vibrations. 9.1 A Lumped-Parameter Piezoaeroelastic Energy Harvester Model for Harmonic Response. 9.2 Experimental Validations of the Lumped-Parameter Model at the Flutter Boundary. 9.3 Utilization of System Nonlinearities in Piezoaeroelastic Energy Harvesting. 9.4 A Distributed-Parameter Piezoaeroelastic Model for Harmonic Response: Assumed-Modes Formulation. 9.5 Time-Domain and Frequency-Domain Piezoaeroelastic Formulations with Finite-Element Modeling. 9.6 Theoretical Case Study for Airflow Excitation of a Cantilevered Plate. 9.7 Summary. 9.8 Chapter Notes. 10. Effects of Material Constants and Mechanical Damping on Power Generation. 10.1 Effective Parameters of Various Soft Ceramics and Single Crystals. 10.2 Theoretical Case Study for Performance Comparison of Soft Ceramics and Single Crystals. 10.3 Effective Parameters of Typical Soft and Hard Ceramics and Single Crystals. 10.4 Theoretical Case Study for Performance Comparison of Soft and Hard Ceramics and Single Crystals. 10.5 Experimental Demonstration for PZT-5A and PZT-5H Cantilevers. 10.6 Summary. 10.7 Chapter Notes. 11. A Brief Review of the Literature of Piezoelectric Energy Harvesting Circuits. 11.1 AC-DC Rectification and Analysis of the Rectified Output. 11.2 Two-Stage Energy Harvesting Circuits: DC-DC Conversion for Impedance Matching. 11.3 Synchronized Switching on Inductor for Piezoelectric Energy Harvesting. 11.4 Summary. 11.5 Chapter Notes. Appendix A. Piezoelectric Constitutive Equations. Appendix B. Modeling of the Excitation Force in Support Motion Problems of Beams and Bars. Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. Appendix D. Strain Nodes of a Uniform Thin Beam for Cantilevered and Other Boundary Conditions. Appendix E. Numerical Data for PZT-5A and PZT-5H Piezoceramics. Appendix F. Constitutive Equations for an Isotropic Substructure. Appendix G. Essential Boundary Conditions for Cantilevered Beams. Appendix H. Electromechanical Lagrange Equations Based on the Extended Hamilton s Principle. Index.

1,471 citations

Journal ArticleDOI
TL;DR: A review of the major efforts and findings documented in the literature can be found in this article, where a common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistably energy harvesters are described, and some remaining challenges and proposed solutions are summarized.
Abstract: The investigation of the conversion of vibrational energy into electrical power has become a major field of research. In recent years, bistable energy harvesting devices have attracted significant attention due to some of their unique features. Through a snap-through action, bistable systems transition from one stable state to the other, which could cause large amplitude motion and dramatically increase power generation. Due to their nonlinear characteristics, such devices may be effective across a broad-frequency bandwidth. Consequently, a rapid engagement of research has been undertaken to understand bistable electromechanical dynamics and to utilize the insight for the development of improved designs. This paper reviews, consolidates, and reports on the major efforts and findings documented in the literature. A common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistable energy harvesters are described, and some remaining challenges and proposed solutions are summarized.

1,158 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of strategies for powering MEMS via non-regenerative and regenerative power supplies, along with recent advancements, and discuss future trends and applications for piezoelectric energy harvesting technology.
Abstract: Power consumption is forecast by the International Technology Roadmap of Semiconductors (ITRS) to pose long-term technical challenges for the semiconductor industry. The purpose of this paper is threefold: (1) to provide an overview of strategies for powering MEMS via non-regenerative and regenerative power supplies; (2) to review the fundamentals of piezoelectric energy harvesting, along with recent advancements, and (3) to discuss future trends and applications for piezoelectric energy harvesting technology. The paper concludes with a discussion of research needs that are critical for the enhancement of piezoelectric energy harvesting devices.

1,151 citations

Book
17 Jul 2000
TL;DR: In this article, the Fourier series is used to measure the response of a single-degree-of-freedom system to initial and non-periodic oscillations, respectively.
Abstract: 1 Concepts from Vibrations 2 Response of Single-Degree-of-Freedom Systems to Initial Excitations 3 Response of Single-Degree-of-Freedom Systems to Harmonic and Periodic Excitations 4 Response of Single-Degree-of-Freedom Systems to Nonperiodic Excitations 5 Two-Degree-of-Freedom Systems 6 Elements of Analytical Dynamics 7 Multi-Degree-of-Freedom Systems 8 Distributed-Parameter Systems: Exact Solutions 9 Distributed-Parameter Systems: Approximate Mathods 10 The Finite Element Method 11 Nonlinear Oscilations 12 Random Vibrations Appendix A. Fourier Series Appendix B. Laplace Transformation Appendix C. Linear Algebra

1,133 citations