scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Energy scavenging for mobile and wireless electronics

01 Jan 2005-IEEE Pervasive Computing (IEEE Computer Society)-Vol. 4, Iss: 1, pp 18-27
TL;DR: A whirlwind survey of energy harvesting can be found in this article, where the authors present a survey of recent advances in energy harvesting, spanning historic and current developments in sensor networks and mobile devices.
Abstract: Energy harvesting has grown from long-established concepts into devices for powering ubiquitously deployed sensor networks and mobile electronics. Systems can scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations. Ongoing power management developments enable battery-powered electronics to live longer. Such advances include dynamic optimization of voltage and clock rate, hybrid analog-digital designs, and clever wake-up procedures that keep the electronics mostly inactive. Exploiting renewable energy resources in the device's environment, however, offers a power source limited by the device's physical survival rather than an adjunct energy store. Energy harvesting's true legacy dates to the water wheel and windmill, and credible approaches that scavenge energy from waste heat or vibration have been around for many decades. Nonetheless, the field has encountered renewed interest as low-power electronics, wireless standards, and miniaturization conspire to populate the world with sensor networks and mobile devices. This article presents a whirlwind survey through energy harvesting, spanning historic and current developments.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a simple, low cost and effective approach of using the charging process in friction to convert mechanical energy into electric power for driving small electronics, which is fabricated by stacking two polymer sheets made of materials having distinctly different triboelectric characteristics, with metal films deposited on the top and bottom of the assembled structure.

4,069 citations

Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations

Journal ArticleDOI
TL;DR: Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.

2,311 citations

Journal ArticleDOI
06 Apr 2007-Science
TL;DR: A nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output and offers a potential solution for powering nanodevices and nanosystems.
Abstract: We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

2,127 citations

Proceedings ArticleDOI
06 Jul 2008
TL;DR: The fundamental tradeoff between the rates at which energy and reliable information can be transmitted over a single noisy line is studied.
Abstract: The fundamental tradeoff between the rates at which energy and reliable information can be transmitted over a single noisy line is studied. Engineering inspiration for this problem is provided by powerline communication, RFID systems, and covert packet timing systems as well as communication systems that scavenge received energy. A capacity-energy function is defined and a coding theorem is given. The capacity-energy function is a non-increasing concave cap function. Capacity-energy functions for several channels are computed.

1,792 citations

References
More filters
Journal ArticleDOI
TL;DR: The goal of this paper is not to suggest that the conversion of vibrations is the best or most versatile method to scavenge ambient power, but to study its potential as a viable power source for applications where vibrations are present.

2,727 citations

Journal ArticleDOI
TL;DR: In this article, a flexible piezoelectric foil stave was used to harness sole-bending energy and a reinforced PZT dimorph to capture heel-strike energy.
Abstract: Decreasing size and power requirements of wearable microelectronics make it possible to replace batteries with systems that capture energy from the user's environment. Unobtrusive devices developed at the MIT Media Lab scavenge electricity from the forces exerted on a shoe during walking: a flexible piezoelectric foil stave to harness sole-bending energy and a reinforced PZT dimorph to capture heel-strike energy.

975 citations

Journal ArticleDOI
TL;DR: A system to convert ambient mechanical vibration into electrical energy for use in powering autonomous low power electronic systems and an ultra low-power delay locked loop (DLL)-based system capable of autonomously achieving a steady-state lock to the vibration frequency is described.
Abstract: A system is proposed to convert ambient mechanical vibration into electrical energy for use in powering autonomous low power electronic systems. The energy is transduced through the use of a variable capacitor. Using microelectromechanical systems (MEMS) technology, such a device has been designed for the system. A low-power controller IC has been fabricated in a 0.6-/spl mu/m CMOS process and has been tested and measured for losses. Based on the tests, the system is expected to produce 8 /spl mu/W of usable power. In addition to the fabricated programmable controller, an ultra low-power delay locked loop (DLL)-based system capable of autonomously achieving a steady-state lock to the vibration frequency is described.

859 citations

Journal ArticleDOI
TL;DR: In this paper, the Coulomb-force parametric generator (CFPG) was proposed to operate in a resonant manner, and the sensitivity of each generator architecture to the source vibration frequency is analyzed and shown that the CFPG can be better suited than the resonant generators to applications where the source frequency is likely to vary.
Abstract: Several forms of vibration-driven MEMS microgenerator are possible and are reported in the literature, with potential application areas including distributed sensing and ubiquitous computing. This paper sets out an analytical basis for their design and comparison, verified against full time-domain simulations. Most reported microgenerators are classified as either velocity-damped resonant generators (VDRGs) or Coulomb-damped resonant generators (CDRGs) and a unified analytical structure is provided for these generator types. Reported generators are shown to have operated at well below achievable power densities and design guides are given for optimising future devices. The paper also describes a new class-the Coulomb-force parametric generator (CFPG)-which does not operate in a resonant manner. For all three generators, expressions and graphs are provided showing the dependence of output power on key operating parameters. The optimization also considers physical generator constraints such as voltage limitation or maximum or minimum damping ratios. The sensitivity of each generator architecture to the source vibration frequency is analyzed and this shows that the CFPG can be better suited than the resonant generators to applications where the source frequency is likely to vary. It is demonstrated that mechanical resonance is particularly useful when the vibration source amplitude is small compared to the allowable mass-to-frame displacement. The CDRG and the VDRG generate the same power at resonance but give better performance below and above resonance respectively. Both resonant generator types are unable to operate when the allowable mass frame displacement is small compared to the vibration source amplitude, as is likely to be the case in some MEMS applications. The CFPG is, therefore, required for such applications.

758 citations

Proceedings ArticleDOI
09 Jul 2002
TL;DR: A particularly promising class of EAPs is dielectric elastomer, also known as electroelastomer as mentioned in this paper, which has been developed to the point where exceptional performance has already been demonstrated: for example, actuated strains of over 300 percent.
Abstract: Electroactive polymers (EAPs) can overcome many limitations of traditional smart material and transducer technologies. A particularly promising class of EAP is dielectric elastomer, also known as electroelastomer. Dielectric elastomer transducers are rubbery polymer materials with compliant electrodes that have a large electromechanical response to an applied electric field. The technology has been developed to the point where exceptional performance has already been demonstrated: for example, actuated strains of over 300 percent. These strains and the corresponding energy densities are beyond those of other field-activated materials including piezoelectrics. Because of their unique characteristics and expected low cost, dielectric elastomer transducers are under development in a wide range of applications including multifunctional (combined actuation, structure, and sensing) muscle-like actuators for biomimetic robots; microelectromechanical systems (MEMS); smart skins; conformal loudspeakers; haptic displays; and replacements for electromagnetic and pneumatic actuators for industrial and commercial applications. Dielectric elastomers have shown unique performance in each of these applications; however, some further development is required before they can be integrated into products and smart-materials systems. Among the many issues that may ultimately determine the success or failure of the technology for specific applications are durability, operating voltage and power requirements, and the size, cost, and complexity of the required electronic driving circuitry.

331 citations