scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Enhanced visible-light photocatalysis of clofibric acid using graphitic carbon nitride modified by cerium oxide nanoparticles.

05 Mar 2021-Journal of Hazardous Materials (Elsevier)-Vol. 405, pp 124204-124204
TL;DR: The analysis of relationship between the oxidation peak potential (EOP) and the reaction rate constant indicated that photocatalysis using as prepared g-C3N4/CeO2-3 heterojunction is apt to oxidize contaminants with electron withdrawing group under acid condition.
About: This article is published in Journal of Hazardous Materials.The article was published on 2021-03-05. It has received 31 citations till now. The article focuses on the topics: Photocatalysis & Graphitic carbon nitride.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide deep insights on heterojunction mechanisms and the latest progress on photodegradation of various contaminants in wastewater using CeO2-based photocatalysts.

93 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide deep insights on heterojunction mechanisms and the latest progress on photodegradation of various contaminants in wastewater using CeO2-based photocatalysts.

91 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of different amounts of Ag nanocrystals adsorbed on the surfaces of Au@Cu2O on the surface-enhanced Raman scattering (SERS) activity was investigated based on the SERS detection of 4-mercaptobenzoic acid (4-MBA) reporter molecules.
Abstract: Ternary noble metal-semiconductor nanocomposites (NCs) with core-shell-satellite nanostructures have received widespread attention due to their outstanding performance in detecting pollutants through surface-enhanced Raman scattering (SERS) and photodegradation of organic pollutants. In this work, ternary Au@Cu2O-Ag NCs were designed and prepared by a galvanic replacement method. The effect of different amounts of Ag nanocrystals adsorbed on the surfaces of Au@Cu2O on the SERS activity was investigated based on the SERS detection of 4-mercaptobenzoic acid (4-MBA) reporter molecules. Based on electromagnetic field simulations and photoluminescence (PL) results, a possible SERS enhancement mechanism was proposed and discussed. Moreover, Au@Cu2O-Ag NCs served as SERS substrates, and highly sensitive SERS detection of malachite green (MG) with a detection limit as low as 10-9 M was achieved. In addition, Au@Cu2O-Ag NCs were recycled due to their superior self-cleaning ability and could catalyze the degradation of MG driven by visible light. This work demonstrates a wide range of possibilities for the integration of recyclable SERS detection and photodegradation of organic dyes and promotes the development of green testing techniques.

53 citations

Journal ArticleDOI
TL;DR: In this paper, mesoporous nanosheets assembled microspheres (D-CeO2) are engineered by polymer precipitation, hydrothermal and surface hydrogenation strategies.

23 citations

Journal ArticleDOI
TL;DR: In this paper , mesoporous nanosheets assembled microspheres (D-CeO2) are engineered by polymer precipitation, hydrothermal and surface hydrogenation strategies.

20 citations

References
More filters
Journal ArticleDOI
TL;DR: This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water.

2,933 citations

Journal ArticleDOI
TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Abstract: Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.

2,868 citations

Journal ArticleDOI
TL;DR: The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS) in photocatalysis were surveyed comprehensively and the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2.
Abstract: The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (•O2–), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2. However, besides TiO2 some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed •OH could be regarded as trapped holes, which are involved in a rapid adsorption–desorption equilibrium at the TiO2–solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas •OH in solution would exert the reactivity...

2,249 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a method for the extraction of Colloid Chemistry Max-Planck Institute of Colloids and Interfaces Research Campus Golm, 14476 Potsdam (Germany).
Abstract: [*] Prof. X. C. Wang, X. F. Chen, Prof. X. Z. Fu Research Institute of Photocatalysis State Key Laboratory Breeding Base of Photocatalysis Fuzhou University, Fuzhou 350002 (PR China) E-mail: xcwang@fzu.edu.cn; xzfu@fzu.edu.cn Prof. X. C. Wang, Dr. A. Thomas, Prof. M. Antonietti Department of Colloid Chemistry Max-Planck Institute of Colloids and Interfaces Research Campus Golm, 14476 Potsdam (Germany)

1,122 citations

Journal ArticleDOI
TL;DR: For the first time, a direct g-C3N4-TiO2 Z-scheme photocatalyst without an electron mediator was prepared by a facile calcination route utilizing affordable P25 and urea as the feedstocks and will provide new insights into the design of high-performance Z-Scheme photoc atalysts for indoor air purification.
Abstract: Formaldehyde (HCHO) is a major indoor pollutant and long-term exposure to HCHO may cause health problems such as nasal tumors and skin irritation. Photocatalytic oxidation is considered as the most promising strategy for the decomposition of HCHO. Herein, for the first time, a direct g-C3N4–TiO2 Z-scheme photocatalyst without an electron mediator was prepared by a facile calcination route utilizing affordable P25 and urea as the feedstocks. Photocatalytic activities of the as-prepared samples were evaluated by the photocatalytic oxidation decomposition of HCHO in air. It was shown that the photocatalytic activity of the prepared Z-scheme photocatalysts was highly dependent on the g-C3N4 content. At the optimal g-C3N4 content (sample U100 in this study), the apparent reaction rate constant was 7.36 × 10−2 min−1 for HCHO decomposition, which exceeded that of pure P25 (3.53 × 10−2 min−1) by a factor of 2.1. The enhanced photocatalytic activity could be ascribed to the formation of a g-C3N4–TiO2 Z-scheme photocatalyst, which results in the efficient space separation of photo-induced charge carriers. Considering the ease of the preparation method, this work will provide new insights into the design of high-performance Z-scheme photocatalysts for indoor air purification.

1,112 citations