scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage

TL;DR: In this paper, a top-down BCl3 plasma etching on a native semi-insulating Mg-doped (100) β-Ga2O3 substrate was used to construct fin-array field effect transistors (finFETs).
Abstract: Sn-doped gallium oxide (Ga2O3) wrap-gate fin-array field-effect transistors (finFETs) were formed by top-down BCl3 plasma etching on a native semi-insulating Mg-doped (100) β-Ga2O3 substrate. The fin channels have a triangular cross-section and are approximately 300 nm wide and 200 nm tall. FinFETs, with 20 nm Al2O3 gate dielectric and ∼2 μm wrap-gate, demonstrate normally-off operation with a threshold voltage between 0 and +1 V during high-voltage operation. The ION/IOFF ratio is greater than 105 and is mainly limited by high on-resistance that can be significantly improved. At VG = 0, a finFET with 21 μm gate-drain spacing achieved a three-terminal breakdown voltage exceeding 600 V without a field-plate.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: In this article, the performance of high voltage rectifiers and enhancement-mode metal-oxide field effect transistors on Ga2O3 has been evaluated and shown to benefit from the larger critical electric field relative to either SiC or GaN.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics with capabilities beyond existing technologies due to its large bandgap, controllable doping, and the availability of large diameter, relatively inexpensive substrates. These applications include power conditioning systems, including pulsed power for avionics and electric ships, solid-state drivers for heavy electric motors, and advanced power management and control electronics. Wide bandgap (WBG) power devices offer potential savings in both energy and cost. However, converters powered by WBG devices require innovation at all levels, entailing changes to system design, circuit architecture, qualification metrics, and even market models. The performance of high voltage rectifiers and enhancement-mode metal-oxide field effect transistors benefits from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. Reverse breakdown voltages of over 2 kV for β-Ga2O3 have been reported, either with or without edge termination and over 3 kV for a lateral field-plated Ga2O3 Schottky diode on sapphire. The metal-oxide-semiconductor field-effect transistors fabricated on Ga2O3 to date have predominantly been depletion (d-mode) devices, with a few demonstrations of enhancement (e-mode) operation. While these results are promising, what are the limitations of this technology and what needs to occur for it to play a role alongside the more mature SiC and GaN power device technologies? The low thermal conductivity might be mitigated by transferring devices to another substrate or thinning down the substrate and using a heatsink as well as top-side heat extraction. We give a perspective on the materials’ properties and physics of transport, thermal conduction, doping capabilities, and device design that summarizes the current limitations and future areas of development. A key requirement is continued interest from military electronics development agencies. The history of the power electronics device field has shown that new technologies appear roughly every 10-12 years, with a cycle of performance evolution and optimization. The older technologies, however, survive long into the marketplace, for various reasons. Ga2O3 may supplement SiC and GaN, but is not expected to replace them.

348 citations

Journal ArticleDOI
TL;DR: In this article, a high mobility two-dimensional electron gas (2DEG) formed at the β-(AlxGa1-x)2O3/Ga2O 3 interface through modulation doping was demonstrated.
Abstract: In this work, we demonstrate a high mobility two-dimensional electron gas (2DEG) formed at the β-(AlxGa1-x)2O3/Ga2O3 interface through modulation doping. Shubnikov-de Haas (SdH) oscillations were observed in the modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure, indicating a high-quality electron channel formed at the heterojunction interface. The formation of the 2DEG channel was further confirmed by the weak temperature dependence of the carrier density, and the peak low temperature mobility was found to be 2790 cm2/Vs, which is significantly higher than that achieved in bulk-doped Beta-phase Gallium Oxide (β-Ga2O3). The observed SdH oscillations allowed for the extraction of the electron effective mass in the (010) plane to be 0.313 ± 0.015 m0 and the quantum scattering time to be 0.33 ps at 3.5 K. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure lays the foundation for future exploration of quantum physical phenomena and semiconductor device technologies based on the β-Ga2O3 material system.

256 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a single-crystal gallium oxide (Ga2O3) metal-semiconductor field effect transistors (MESFETs) with a gate length of 4 μm and a source-drain spacing of 20 μm is presented.
Abstract: We report a demonstration of single-crystal gallium oxide (Ga2O3) metal-semiconductor field-effect transistors (MESFETs). A Sn-doped Ga2O3 layer was grown on a semi-insulating β-Ga2O3 (010) substrate by molecular-beam epitaxy. We fabricated a circular MESFET with a gate length of 4 μm and a source–drain spacing of 20 μm. The device showed an ideal transistor action represented by the drain current modulation due to the gate voltage (VGS) swing. A complete drain current pinch-off characteristic was also obtained for VGS < −20 V, and the three-terminal off-state breakdown voltage was over 250 V. A low drain leakage current of 3 μA at the off-state led to a high on/off drain current ratio of about 10 000. These device characteristics obtained at the early stage indicate the great potential of Ga2O3-based electrical devices for future power device applications.

1,273 citations

Journal ArticleDOI
TL;DR: The crystal structure of β•Ga2O3 has been determined from single-crystal 3D x-ray diffraction data as mentioned in this paper, and the most probable space group to which the crystal belongs is C2h3-C2/m.
Abstract: The crystal structure of β‐Ga2O3 has been determined from single‐crystal three‐dimensional x‐ray diffraction data. The monoclinic crystal has cell dimensions a=12.23±0.02, b=3.04±0.01, c=5.80±0.01 A and β=103.7±0.3° as originally reported by Kohn, Katz, and Broder [Am. Mineral. 42, 398 (1957)]. There are 4 Ga2O3 in the unit cell. The most probable space group to which the crystal belongs is C2h3—C2/m; the atoms are in five sets of special positions 4i: (000, ½½0)±(x0z). There are two kinds of coordination for Ga3+ ions in this structure, namely tetrahedral and octahedral. Average interionic distances are: tetrahedral Ga–O, 1.83 A; octahedral Ga–O, 2.00 A; tetrahedron edge O–O, 3.02 A; and octahedron edge O–O, 2.84 A. Because of the reduced coordination of half of the metal ions, the density of β‐Ga2O3 is lower than that of α‐Ga2O3 which has the α‐corundum structure. Also the closest approach of two Ga3+ ions in β‐Ga2O3 is 3.04 A which is considerably larger than the closest approach of metal ions in the s...

732 citations

Journal ArticleDOI
TL;DR: In this article, single-crystal gallium oxide (Ga2O3) metal-oxide-semiconductor field effect transistors were fabricated on a semi-insulating β-Ga 2O3 (010) substrate.
Abstract: Single-crystal gallium oxide (Ga2O3) metal-oxide-semiconductor field-effect transistors were fabricated on a semi-insulating β-Ga2O3 (010) substrate. A Sn-doped n-Ga2O3 channel layer was grown by molecular-beam epitaxy. Si-ion implantation doping was performed to source and drain electrode regions for obtaining low-resistance ohmic contacts. An Al2O3 gate dielectric film formed by atomic layer deposition passivated the device surface and significantly reduced gate leakage. The device with a gate length of 2 μm showed effective gate modulation of the drain current with an extremely low off-state drain leakage of less than a few pA/mm, leading to a high drain current on/off ratio of over ten orders of magnitude. A three-terminal off-state breakdown voltage of 370 V was achieved. Stable transistor operation was sustained at temperatures up to 250 °C.

544 citations

Journal ArticleDOI
TL;DR: In this article, the Czochralski method was used to grow 2 in. diameter β-Ga 2 O 3 single crystals with high free-carrier absorption in the near infrared (NIR) wavelength range.

479 citations

Journal ArticleDOI
TL;DR: In this article, a Sn-doped (100) $\beta $ -Ga2O3 epitaxial layer was grown via metal-organic vapor phase epitaxy onto a single-crystal, Mg-Doped semi-insulating (100, β)-Ga 2O3 substrate.
Abstract: A Sn-doped (100) $\beta $ -Ga2O3 epitaxial layer was grown via metal–organic vapor phase epitaxy onto a single-crystal, Mg-doped semi-insulating (100) $\beta $ -Ga2O3 substrate. Ga2O3-based metal–oxide–semiconductor field-effect transistors with a 2- $\mu \text{m}$ gate length ( $L_{G})$ , 3.4- $\mu \text{m}$ source–drain spacing ( $L_{\textrm {SD}})$ , and 0.6- $\mu \text{m}$ gate–drain spacing ( $L_{\textrm {GD}})$ were fabricated and characterized. Devices were observed to hold a gate-to-drain voltage of 230 V in the OFF-state. The gate-to-drain electric field corresponds to 3.8 MV/cm, which is the highest reported for any transistor and surpassing bulk GaN and SiC theoretical limits. Further performance projections are made based on layout, process, and material optimizations to be considered in future iterations.

455 citations