scispace - formally typeset
Journal ArticleDOI: 10.1016/J.MOLCEL.2021.01.002

Enhancers predominantly regulate gene expression during differentiation via transcription initiation.

04 Mar 2021-Molecular Cell (Cell Press)-Vol. 81, Iss: 5
Abstract: Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II) A key question is how transcriptional enhancers influence these events to control gene expression Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and β-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process

... read more

Topics: Regulation of gene expression (64%), Enhancer (61%), RNA polymerase II (59%) ... show more
Citations
  More

6 results found


Journal ArticleDOI: 10.1016/J.MOLCEL.2021.03.008
Takeo Narita1, Shinsuke Ito, Yoshiki Higashijima1, Wai Kit Chu1  +13 moreInstitutions (3)
20 May 2021-Molecular Cell
Abstract: The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.

... read more

Topics: Super-enhancer (58%), Enhancer (55%), Transcription factor (55%) ... show more

9 Citations


Open accessJournal ArticleDOI: 10.1111/FEBS.16089
10 Jul 2021-FEBS Journal
Abstract: Acute and chronic inflammation is a basic pathological event that contributes to atherosclerosis, cancer, infectious diseases, and immune disorders. Inflammation is an adaptive process to both external and internal stimuli experienced by the human body. Although the mechanism of gene transcription is highly complicated and orchestrated in a timely and spatial manner, recent developments in next-generation sequencing, genome-editing, cryo-electron microscopy, and single cell-based technologies could provide us with insights into the roles of super enhancers (SEs). Initially, SEs were implicated in determining cell fate; subsequent studies have clarified that SEs are associated with various pathological conditions, including cancer and inflammatory diseases. Recent technological advances have unveiled the molecular mechanisms of SEs, which involve epigenetic histone modifications, chromatin three-dimensional structures, and phase-separated condensates. In this review, we discuss the relationship between inflammation and SEs and the therapeutic potential of SEs for inflammatory diseases.

... read more

Topics: Super-enhancer (52%)

2 Citations


Journal ArticleDOI: 10.1016/J.DEVCEL.2021.04.023
Erin Aboelnour, Boyan B. Bonev1Institutions (1)
07 Jun 2021-Developmental Cell
Abstract: Understanding how complex cell-fate decisions emerge at the molecular level is a key challenge in developmental biology. Despite remarkable progress in decoding the contribution of the linear epigenome, how spatial genome architecture functionally informs changes in gene expression remains unclear. In this review, we discuss recent insights in elucidating the molecular landscape of genome folding, emphasizing the multilayered nature of the 3D genome, its importance for gene regulation, and its spatiotemporal dynamics. Finally, we discuss how these new concepts and emergent technologies will enable us to address some of the outstanding questions in development and disease.

... read more

Topics: Epigenome (54%), Genome (51%)

2 Citations


Open accessPosted ContentDOI: 10.1101/2021.06.11.448016
Rui Shao1, Rui Shao2, Banushree Kumar1, Banushree Kumar2  +8 moreInstitutions (3)
13 Jun 2021-bioRxiv
Abstract: Unique transcriptomes define naive, primed and paused pluripotent states in mouse embryonic stem cells. Here we perform transient transcriptome sequencing (TT-seq) to de novo define and quantify coding and non-coding transcription units (TUs) in different pluripotent states. We observe a global reduction of RNA synthesis, total RNA amount and turnover rates in ground state naive cells (2i) and paused pluripotency (mTORi). We demonstrate that elongation velocity can be reliably estimated from TT-seq nascent RNA and RNA polymerase II occupancy and observe a transcriptome-wide attenuation of elongation velocity in the two inhibitor-induced states. We also discover a relationship between elongation velocity and termination read-through distance. Our analysis suggests that steady-state transcriptomes in mouse ES cells are controlled predominantly on the level of RNA synthesis, and that signaling pathways governing different pluripotent states immediately control key parameters of transcription.

... read more

Topics: Transcription (biology) (59%), RNA polymerase II (58%), RNA (57%) ... show more

Open accessPosted ContentDOI: 10.1101/2021.07.14.452379
Jane Mellor1, Lorenz P1, Anna R Lamstaes1, Harry Fischl1  +7 moreInstitutions (1)
14 Jul 2021-bioRxiv
Abstract: Genomes are pervasively transcribed leading to stable and unstable transcripts that define functional regions of genomes and contribute to cellular phenotypes. Defining comprehensive nascent transcriptomes is pivotal to understand gene regulation, disease processes, and the impact of extracellular signals on cells. However, currently employed methods are laborious, technically challenging and costly. We developed single-nucleotide resolution 4sU-sequencing (SNU-Seq), involving pulse labelling, biotinylation and direct isolation of nascent transcripts. Artificial poly-(A)-tailing of the 3’ most nucleotide of nascent transcripts ensures oligo-d(T) primer-based library preparation and sequencing using commercial 3’ RNA-Seq kits. We show that SNU-Seq is a cost-effective new method generating even read profiles across transcription units. We used SNU-Seq to identify transcription elongation parameters, to map usage of polyadenylation (PAS) sites and novel enhancers. Remarkably, 4sU labelled nascent RNA accumulates short ∼100nt transcripts that map to the 5’ end of genes. We show that isolation of these short nascent RNA and sequencing the 5’ and 3’ ends using size-selected SNU-Seq (ssSNU-Seq) provides highly sensitive annotations of mapped and novel TSSs, promoter-proximal pause/termination sites. Thus, SNU-seq and ssSNU-seq combined yield comprehensive transcriptomics data at low cost with high spatial and temporal resolution. Highlights -SNU-Seq maps nascent transcripts at base-pair resolution, with high sensitivity and low cost -SNU-Seq detects comprehensive polyadenylation sites. -SNU-Seq maps the promoter proximal pause 60-80 nt from the TSS. -Size-selected SNU-Seq yields highly sensitive and novel TSS annotations

... read more


References
  More

89 results found


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTP352
Heng Li1, Bob Handsaker2, Alec Wysoker2, T. J. Fennell2  +5 moreInstitutions (4)
01 Aug 2009-Bioinformatics
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

... read more

Topics: Variant Call Format (62%), Stockholm format (61%), FASTQ format (56%) ... show more

35,747 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTS635
01 Jan 2013-Bioinformatics
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

... read more

Topics: MRNA Sequencing (57%)

20,172 Citations


Open accessJournal ArticleDOI: 10.1186/GB-2009-10-3-R25
04 Mar 2009-Genome Biology
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

... read more

Topics: Hybrid genome assembly (51%)

18,079 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTQ033
Aaron R. Quinlan1, Ira M. Hall1Institutions (1)
15 Mar 2010-Bioinformatics
Abstract: Motivation: Testing for correlations between different sets of genomic features is a fundamental task in genomics research. However, searching for overlaps between features with existing webbased methods is complicated by the massive datasets that are routinely produced with current sequencing technologies. Fast and flexible tools are therefore required to ask complex questions of these data in an efficient manner. Results: This article introduces a new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format. BEDTools also supports the comparison of sequence alignments in BAM format to both BED and GFF features. The tools are extremely efficient and allow the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks. BEDTools can be combined with one another as well as with standard UNIX commands, thus facilitating routine genomics tasks as well as pipelines that can quickly answer intricate questions of large genomic datasets. Availability and implementation: BEDTools was written in C++. Source code and a comprehensive user manual are freely available at http://code.google.com/p/bedtools

... read more

Topics: Software suite (52%), Source code (50%)

14,088 Citations


Open accessJournal ArticleDOI: 10.1038/NATURE11247
06 Sep 2012-Nature
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

... read more

Topics: ENCODE (66%), Genome project (63%), Genome (59%) ... show more

11,598 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20216
Network Information