scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.

01 Apr 2017-Computerized Medical Imaging and Graphics (Comput Med Imaging Graph)-Vol. 57, Iss: 57, pp 4-9
TL;DR: A graph based semi-supervised learning (SSL) scheme using deep convolutional neural network (CNN) for breast cancer diagnosis using data weighing, feature selection, dividing co-training data labeling, and CNN.
About: This article is published in Computerized Medical Imaging and Graphics.The article was published on 2017-04-01 and is currently open access. It has received 228 citations till now. The article focuses on the topics: Semi-supervised learning & Deep learning.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data and compares the performances of DL techniques when applied to different data sets across various application domains.
Abstract: Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics , bioimaging , medical imaging , and (brain/body)–machine interfaces . These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.

622 citations


Cites methods from "Enhancing deep convolutional neural..."

  • ...DL based methods outperformed other methods in denoising MMM & dental radiographs [144], and brain CT scans [132] (Fig....

    [...]

  • ...CNN was applied to classify breast masses from mammograms (MMM) [151–155], diagnose AD using different neuroimages (e.g., brain MRI [126], brain CT scans [135], and (f)MRIs [128]), and rheumatoid arthritis from hand radiographs [150]....

    [...]

  • ...CNN based methods performed very well in detecting breast mass and lesion in MMM obtained from different datasets (see Fig....

    [...]

  • ...However, for the MMM form MIAS database, a DWT with back-propagating NN outperformed its SVM/ CNN counterparts (DWT-GMB: 97.4% vs. SVM-MLP: 93.8...

    [...]

  • ...In detecting masses in MMM from BCDR database, CNN with 2 convolution layers and 1 fully connected layer (CNN3) performed similar to other methods (CNN3:82%, HGD: 83%, HOG: 81%, DeCAF: 82%), and CNN with 1 convolution layer and 1 fully connected layer performed poorly (CNN2: 78...

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented in this paper, where the challenges and potential of these techniques are also highlighted.
Abstract: The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering have made medical image analysis one of the top research and development area. One of the reasons for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This includes application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of these techniques are also highlighted.

570 citations

Journal ArticleDOI
TL;DR: The general principles of DL and convolutional neural networks are introduced, five major areas of application of DL in medical imaging and radiation therapy are surveyed, common themes are identified, methods for dataset expansion are discussed, and lessons learned, remaining challenges, and future directions are summarized.
Abstract: The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising avenues for the future both in terms of applications as well as technical innovations. We introduce the general principles of DL and convolutional neural networks, survey five major areas of application of DL in medical imaging and radiation therapy, identify common themes, discuss methods for dataset expansion, and conclude by summarizing lessons learned, remaining challenges, and future directions.

525 citations


Cites methods from "Enhancing deep convolutional neural..."

  • ...Additional preprocessing and data use methods can further improve characterization such as in the past use of unlabeled data with conventional features to enhance the machine learning training.(225,226) Here, the overall system can learn aspects of the data structure without the knowledge of the disease state, leaving the labeled information for the final classification step....

    [...]

Journal ArticleDOI
TL;DR: An introduction to deep learning technology is provided and the stages that are entailed in the design process of deep learning radiology research are presented and the results of a survey of the application of convolutional neural networks to radiologic imaging are detailed.
Abstract: This article is a guide to convolutional neural network technologies and their clinical applications in the analysis of radiologic images.

287 citations

References
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations


"Enhancing deep convolutional neural..." refers methods in this paper

  • ...Then we calculated the grey level co-occurrence matrix (GLCM) [26] of the mass region, and measured mean, variance, contrast, correlation, entropy and homogeneity features of the matrix....

    [...]

  • ...calculated the grey level co-occurrence matrix (GLCM) [26] of the mass region, and measured...

    [...]

  • ...For example, area, circularity, ratio of semi-axis are very typical and useful morphological features [3]; average intensity, mean gradient of region boundary, density uniformity are very common density features used for mass detection [4]; wavelet features, gray-level co-occurrence matrix (GLCM) features, run length features are powerful texture features we used in our previous researches [5][6][7][8][9]....

    [...]

Journal ArticleDOI
TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Abstract: The ability of learning networks to generalize can be greatly enhanced by providing constraints from the task domain. This paper demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network. This approach has been successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service. A single network learns the entire recognition operation, going from the normalized image of the character to the final classification.

9,775 citations


Additional excerpts

  • ...several convolutional layers and subsampling layers [20][21]....

    [...]

  • ...1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 LeCun’s model [20][21]....

    [...]

Proceedings ArticleDOI
24 Jul 1998
TL;DR: A PAC-style analysis is provided for a problem setting motivated by the task of learning to classify web pages, in which the description of each example can be partitioned into two distinct views, to allow inexpensive unlabeled data to augment, a much smaller set of labeled examples.
Abstract: We consider the problem of using a large unlabeled sample to boost performance of a learning algorit,hrn when only a small set of labeled examples is available. In particular, we consider a problem setting motivated by the task of learning to classify web pages, in which the description of each example can be partitioned into two distinct views. For example, the description of a web page can be partitioned into the words occurring on that page, and the words occurring in hyperlinks t,hat point to that page. We assume that either view of the example would be sufficient for learning if we had enough labeled data, but our goal is to use both views together to allow inexpensive unlabeled data to augment, a much smaller set of labeled examples. Specifically, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each algorithm’s predictions on new unlabeled examples are used to enlarge the training set of the other. Our goal in this paper is to provide a PAC-style analysis for this setting, and, more broadly, a PAC-style framework for the general problem of learning from both labeled and unlabeled data. We also provide empirical results on real web-page data indicating that this use of unlabeled examples can lead to significant improvement of hypotheses in practice. *This research was supported in part by the DARPA HPKB program under contract F30602-97-1-0215 and by NSF National Young investigator grant CCR-9357793. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. TO copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. COLT 98 Madison WI USA Copyright ACM 1998 l-58113-057--0/98/ 7...%5.00 92 Tom Mitchell School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3891 mitchell+@cs.cmu.edu

5,840 citations


"Enhancing deep convolutional neural..." refers background in this paper

  • ...Co-training [17] is one of the most popular and promising...

    [...]

01 Jan 1998
TL;DR: This thesis addresses the problem of feature selection for machine learning through a correlation based approach with CFS (Correlation based Feature Selection), an algorithm that couples this evaluation formula with an appropriate correlation measure and a heuristic search strategy.
Abstract: A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that good feature sets contain features that are highly correlated with the class, yet uncorrelated with each other. A feature evaluation formula, based on ideas from test theory, provides an operational definition of this hypothesis. CFS (Correlation based Feature Selection) is an algorithm that couples this evaluation formula with an appropriate correlation measure and a heuristic search strategy. CFS was evaluated by experiments on artificial and natural datasets. Three machine learning algorithms were used: C4.5 (a decision tree learner), IB1 (an instance based learner), and naive Bayes. Experiments on artificial datasets showed that CFS quickly identifies and screens irrelevant, redundant, and noisy features, and identifies relevant features as long as their relevance does not strongly depend on other features. On natural domains, CFS typically eliminated well over half the features. In most cases, classification accuracy using the reduced feature set equaled or bettered accuracy using the complete feature set. Feature selection degraded machine learning performance in cases where some features were eliminated which were highly predictive of very small areas of the instance space. Further experiments compared CFS with a wrapper—a well known approach to feature selection that employs the target learning algorithm to evaluate feature sets. In many cases CFS gave comparable results to the wrapper, and in general, outperformed the wrapper on small datasets. CFS executes many times faster than the wrapper, which allows it to scale to larger datasets. Two methods of extending CFS to handle feature interaction are presented and experimentally evaluated. The first considers pairs of features and the second incorporates iii feature weights calculated by the RELIEF algorithm. Experiments on artificial domains showed that both methods were able to identify interacting features. On natural domains, the pairwise method gave more reliable results than using weights provided by RELIEF.

3,533 citations


"Enhancing deep convolutional neural..." refers methods in this paper

  • ...by DROP3 instance selection method [27], we developed three data weighing equations using...

    [...]