scispace - formally typeset
Open accessJournal ArticleDOI: 10.1186/S13024-021-00434-7

Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models

04 Mar 2021-Molecular Neurodegeneration (BioMed Central)-Vol. 16, Iss: 1, pp 1-23
Abstract: Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD.

... read more

Topics: Olfactory system (64%), Olfactory bulb (64%), Olfaction (64%) ... show more

9 results found

Journal ArticleDOI: 10.1007/S10571-021-01147-7
Abstract: Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer’s progression.

... read more

Topics: Mitophagy (52%), Astrocyte (52%), Synapse (51%) ... show more

2 Citations

Open accessJournal ArticleDOI: 10.3389/FNSYS.2021.642349
Wenjun Yu1, Xiaoyan Wu2, Yunan Chen3, Zhiying Liang2  +10 moreInstitutions (3)
Abstract: The anterior cingulate cortex (ACC) and hippocampus (HIPP) are two key brain regions associated with pain and pain-related affective processing. However, whether and how pelvic pain alters the neural activity and connectivity of the ACC and HIPP under baseline and during social pain, and the underlying cellular and molecular mechanisms, remain unclear. Using functional magnetic resonance imaging (fMRI) combined with electrophysiology and biochemistry, we show that pelvic pain, particularly, primary dysmenorrhea (PDM), causes an increase in the functional connectivity between ACC and HIPP in resting-state fMRI, and a smaller reduction in connectivity during social exclusion in PDM females with periovulatory phase. Similarly, model rats demonstrate significantly increased ACC-HIPP synchronization in the gamma band, associating with reduced modulation by ACC-theta on HIPP-gamma and increased levels of receptor proteins and excitation. This study brings together human fMRI and animal research and enables improved therapeutic strategies for ameliorating pain and pain-related affective processing.

... read more

Topics: Anterior cingulate cortex (55%), Functional magnetic resonance imaging (53%), Pelvic pain (52%) ... show more

1 Citations

Open accessPosted ContentDOI: 10.1101/2020.08.06.239293
J. Kendall Berry1, Daniel N. Cox1Institutions (1)
07 May 2021-bioRxiv
Abstract: Several neurodegenerative diseases impact the olfactory system, and in particular the olfactory bulb, early in disease progression. One mechanism by which damage occurs is via synaptic dysfunction. Here, we implement a computational model of the olfactory bulb and investigate the effect of weakened connection weights on network oscillatory behavior. Olfactory bulb network activity can be modeled by a system of equations that describes a set of coupled nonlinear oscillators. In this modeling framework, we propagate damage to synaptic weights using several strategies, varying from localized to global. Damage propagated in a dispersed or spreading manner leads to greater oscillatory power at moderate levels of damage. This increase arises from a higher average level of mitral cell activity due to a shift in the balance between excitation and inhibition. That this shift leads to greater oscillations critically depends on the nonlinearity of the activation function. Linearized analysis of the network dynamics predicts when this shift leads to loss of oscillatory activity. We thus demonstrate one potential mechanism involved in the increased gamma oscillations seen in some animal models of Alzheimers disease and highlight the potential that pathological olfactory bulb behavior presents as an early biomarker of disease.

... read more

Topics: Olfactory bulb (61%), Olfactory system (60%)

Journal ArticleDOI: 10.1016/J.EXPNEUROL.2021.113805
Yi-gang Peng1, Ping-jing Cai1, Jian-hang Hu1, Jinxiang Jiang2  +4 moreInstitutions (2)
Abstract: Mild behavioral impairment (MBI), which can include compulsive behavior, is an early sign of Alzheimer's disease (AD), but its underlying neural mechanisms remain unclear. Here, we show that 3–5-month-old APP/PS1 mice display obsessive-compulsive disorder (OCD)-like behavior. The number of parvalbumin-positive (PV) interneurons and level of high gamma (γhigh) oscillation are significantly decreased in the striatum of AD mice. This is accompanied by enhanced β-γhigh coupling and firing rates of putative striatal projection neurons (SPNs), indicating decorrelation between PV interneurons and SPNs. Local field potentials (LFPs) simultaneously recorded in prefrontal cortex (PFC) and striatum (Str) demonstrate a decrease in γhigh-band coherent activity and spike-field coherence in corticostriatal circuits of APP/PS1 mice. Furthermore, levels of GABAB receptor (GABABR), but not GABAA receptor (GABAAR), and glutamatergic receptors, were markedly reduced, in line with presymptomatic AD-related behavioral changes. These findings suggest that MBI occurs as early as 3–5 months in APP/PS1 mice and that altered corticostriatal synchronization may play a role in mediating the behavioral phenotypes observed.

... read more

Topics: Striatum (52%), Prefrontal cortex (51%), GABAB receptor (51%)

Open accessJournal ArticleDOI: 10.1016/J.BBI.2021.09.017
Jinxiang Jiang1, Binliang Tang2, Lei Wang1, Qingwei Huo3  +12 moreInstitutions (4)
Abstract: Neuroinflammation with excess microglial activation and synaptic dysfunction are early symptoms of most neurological diseases. However, how microglia-associated neuroinflammation regulates synaptic activity remains obscure. We report here that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation. LPS causes upregulation in levels of GABAAR subunits, glutamine synthetase and vesicular GABA transporter, and downregulation in brain-derived neurotrophic factor (BDNF) and its receptor, pTrkB. Blockage of microglial activation by minocycline ameliorates LPS-induced abnormal expression of GABA signaling-related proteins and activity of synaptic and network. Moreover, minocycline prevents the mice from LPS-induced aberrant behavior, such as a reduction in total distance and time spent in the centre in the open field test; decreases in entries into the open arm of elevated-plus maze and in consumption of sucrose; increased immobility in the tail suspension test. Furthermore, upregulation of GABA signaling by tiagabine also prevents LPS-induced microglial activation and aberrant behavior. This study illustrates a mode of bidirectional constitutive signaling between the neural and immune compartments of the brain, and suggests that the mPFC is an important area for brain-immune system communication. Moreover, the present study highlights GABAergic signaling as a key therapeutic target for mitigating neuroinflammation-induced abnormal synaptic activity in the mPFC, together with the associated behavioral abnormalities.

... read more

Topics: GABAergic (59%), Inhibitory postsynaptic potential (53%), Neuroinflammation (53%) ... show more


122 results found

Journal ArticleDOI: 10.1038/35084005
Nikos K. Logothetis1, J Pauls1, Mark Augath1, T Trinath1  +1 moreInstitutions (1)
12 Jul 2001-Nature
Abstract: Functional magnetic resonance imaging (fMRI) is widely used to study the operational organization of the human brain, but the exact relationship between the measured fMRI signal and the underlying neural activity is unclear. Here we present simultaneous intracortical recordings of neural signals and fMRI responses. We compared local field potentials (LFPs), single- and multi-unit spiking activity with highly spatio-temporally resolved blood-oxygen-level-dependent (BOLD) fMRI responses from the visual cortex of monkeys. The largest magnitude changes were observed in LFPs, which at recording sites characterized by transient responses were the only signal that significantly correlated with the haemodynamic response. Linear systems analysis on a trialby-trial basis showed that the impulse response of the neurovascular system is both animal- and site-specific, and that LFPs yield a better estimate of BOLD responses than the multi-unit responses. These findings suggest that the BOLD contrast mechanism reflects the input and intracortical processing of a given area rather than its spiking output.

... read more

Topics: EEG-fMRI (62%), Spinal fMRI (57%), Visual cortex (52%) ... show more

5,752 Citations

Robert S. Zucker1, Wade G. Regehr2Institutions (2)
Abstract: ▪ Abstract Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca2+]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases...

... read more

Topics: Synaptic augmentation (69%), Chemical synaptic transmission (68%), Neural facilitation (65%) ... show more

4,233 Citations

Journal ArticleDOI: 10.1038/338334A0
23 Mar 1989-Nature
Abstract: A FUNDAMENTAL step in visual pattern recognition is the establishment of relations between spatially separate features. Recently, we have shown that neurons in the cat visual cortex have oscillatory responses in the range 40–60 Hz (refs 1,2) which occur in synchrony for cells in a functional column and are tightly correlated with a local oscillatory field potential. This led us to hypothesize that the synchronization of oscillatory responses of spatially distributed, feature selective cells might be a way to establish relations between features in different parts of the visual field2,3. In support of this hypothesis, we demonstrate here that neurons in spatially separate columns can synchronize their oscillatory responses. The synchronization has, on average, no phase difference, depends on the spatial separation and the orientation preference of the cells and is influenced by global stimulus properties.

... read more

Topics: Visual cortex (55%), Receptive field (53%)

3,899 Citations

Open accessJournal ArticleDOI: 10.1016/S0896-6273(03)00434-3
31 Jul 2003-Neuron
Abstract: The neuropathological correlates of Alzheimer's disease (AD) include amyloid-beta (Abeta) plaques and neurofibrillary tangles. To study the interaction between Abeta and tau and their effect on synaptic function, we derived a triple-transgenic model (3xTg-AD) harboring PS1(M146V), APP(Swe), and tau(P301L) transgenes. Rather than crossing independent lines, we microinjected two transgenes into single-cell embryos from homozygous PS1(M146V) knockin mice, generating mice with the same genetic background. 3xTg-AD mice progressively develop plaques and tangles. Synaptic dysfunction, including LTP deficits, manifests in an age-related manner, but before plaque and tangle pathology. Deficits in long-term synaptic plasticity correlate with the accumulation of intraneuronal Abeta. These studies suggest a novel pathogenic role for intraneuronal Abeta with regards to synaptic plasticity. The recapitulation of salient features of AD in these mice clarifies the relationships between Abeta, synaptic dysfunction, and tangles and provides a valuable model for evaluating potential AD therapeutics as the impact on both lesions can be assessed.

... read more

3,430 Citations

Open accessJournal ArticleDOI: 10.1038/NATURE08002
04 Jun 2009-Nature
Abstract: Corticalgammaoscillations(20280Hz)predictincreasesinfocusedattention,andfailureingammaregulationisahallmark of neurological and psychiatric disease. Current theory predicts that gamma oscillations are generated by synchronous activity of fast-spiking inhibitory interneurons, with the resulting rhythmic inhibition producing neural ensemble synchrony by generating a narrow window for effective excitation. We causally tested these hypotheses in barrel cortex in vivo by targeting optogenetic manipulation selectively to fast-spiking interneurons. Here we show that light-driven activation of fast-spiking interneurons atvariedfrequencies (82200Hz) selectivelyamplifies gamma oscillations. Incontrast, pyramidal neuron activation amplifies only lower frequency oscillations, a cell-type-specific double dissociation. We found that the timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses. Our data directly support the fast-spiking-gamma hypothesis and provide the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.

... read more

Topics: Interneuron (61%), Rhythmic inhibition (57%), Gamma Rhythm (57%) ... show more

2,166 Citations