scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Enhancing security and privacy in biometrics-based authentication systems

01 Mar 2001-Ibm Systems Journal (IBM)-Vol. 40, Iss: 3, pp 614-634
TL;DR: The inherent strengths of biometrics-based authentication are outlined, the weak links in systems employing biometric authentication are identified, and new solutions for eliminating these weak links are presented.
Abstract: Because biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. It is important that such biometrics-based authentication systems be designed to withstand attacks when employed in security-critical applications, especially in unattended remote applications such as e-commerce. In this paper we outline the inherent strengths of biometrics-based authentication, identify the weak links in systems employing biometrics-based authentication, and present new solutions for eliminating some of these weak links. Although, for illustration purposes, fingerprint authentication is used throughout, our analysis extends to other biometrics-based methods.
Citations
More filters
01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Journal ArticleDOI
TL;DR: An overview of biometrics is provided and some of the salient research issues that need to be addressed for making biometric technology an effective tool for providing information security are discussed.
Abstract: Establishing identity is becoming critical in our vastly interconnected society. Questions such as "Is she really who she claims to be?," "Is this person authorized to use this facility?," or "Is he in the watchlist posted by the government?" are routinely being posed in a variety of scenarios ranging from issuing a driver's license to gaining entry into a country. The need for reliable user authentication techniques has increased in the wake of heightened concerns about security and rapid advancements in networking, communication, and mobility. Biometrics, described as the science of recognizing an individual based on his or her physical or behavioral traits, is beginning to gain acceptance as a legitimate method for determining an individual's identity. Biometric systems have now been deployed in various commercial, civilian, and forensic applications as a means of establishing identity. In this paper, we provide an overview of biometrics and discuss some of the salient research issues that need to be addressed for making biometric technology an effective tool for providing information security. The primary contribution of this overview includes: 1) examining applications where biometric scan solve issues pertaining to information security; 2) enumerating the fundamental challenges encountered by biometric systems in real-world applications; and 3) discussing solutions to address the problems of scalability and security in large-scale authentication systems.

1,067 citations


Additional excerpts

  • ...[22] propose the...

    [...]

Journal ArticleDOI
18 May 2004
TL;DR: This work presents various methods that monolithically bind a cryptographic key with the biometric template of a user stored in the database in such a way that the key cannot be revealed without a successful biometric authentication.
Abstract: In traditional cryptosystems, user authentication is based on possession of secret keys; the method falls apart if the keys are not kept secret (i.e., shared with non-legitimate users). Further, keys can be forgotten, lost, or stolen and, thus, cannot provide non-repudiation. Current authentication systems based on physiological and behavioral characteristics of persons (known as biometrics), such as fingerprints, inherently provide solutions to many of these problems and may replace the authentication component of traditional cryptosystems. We present various methods that monolithically bind a cryptographic key with the biometric template of a user stored in the database in such a way that the key cannot be revealed without a successful biometric authentication. We assess the performance of one of these biometric key binding/generation algorithms using the fingerprint biometric. We illustrate the challenges involved in biometric key generation primarily due to drastic acquisition variations in the representation of a biometric identifier and the imperfect nature of biometric feature extraction and matching algorithms. We elaborate on the suitability of these algorithms for digital rights management systems.

942 citations

Journal ArticleDOI
TL;DR: This paper demonstrates several methods to generate multiple cancelable identifiers from fingerprint images to overcome privacy concerns and concludes that feature-level cancelable biometric construction is practicable in large biometric deployments.
Abstract: Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key". The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments

884 citations

Journal ArticleDOI
Lawrence O'Gorman1
01 Dec 2003
TL;DR: This paper examines passwords, security tokens, and biometrics-which they collectively call authenticators-and compares their effectiveness against several attacks and suitability for particular security specifications such as compromise detection and nonrepudiation.
Abstract: For decades, the password has been the standard means for user authentication on computers. However, as users are required to remember more, longer, and changing passwords, it is evident that a more convenient and secure solution to user authentication is necessary. This paper examines passwords, security tokens, and biometrics-which we collectively call authenticators-and compares these authenticators and their combinations. We examine their effectiveness against several attacks and suitability for particular security specifications such as compromise detection and nonrepudiation. Examples of authenticator combinations and protocols are described to show tradeoffs and solutions that meet chosen, practical requirements. The paper endeavors to offer a comprehensive picture of user authentication solutions for the purposes of evaluating options for use and identifying deficiencies requiring further research.

732 citations


Cites background from "Enhancing security and privacy in b..."

  • ...So even biometrics cannot offer a guaranteed defense against repudiation, as will be discussed further in Section IV-G....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This work explores both traditional and novel techniques for addressing the data-hiding process and evaluates these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.
Abstract: Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, and copyright. Several constraints affect this process: the quantity of data to be hidden, the need for invariance of these data under conditions where a "host" signal is subject to distortions, e.g., lossy compression, and the degree to which the data must be immune to interception, modification, or removal by a third party. We explore both traditional and novel techniques for addressing the data-hiding process and evaluate these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.

3,037 citations

Book
01 Mar 1995
TL;DR: Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding and developed the theory in both continuous and discrete time.
Abstract: First published in 1995, Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding. The book developed the theory in both continuous and discrete time, and presented important applications. During the past decade, it filled a useful need in explaining a new view of signal processing based on flexible time-frequency analysis and its applications. Since 2007, the authors now retain the copyright and allow open access to the book.

2,793 citations

Journal ArticleDOI
01 Jul 1999
TL;DR: An overview of the information-hiding techniques field is given, of what the authors know, what works, what does not, and what are the interesting topics for research.
Abstract: Information-hiding techniques have recently become important in a number of application areas. Digital audio, video, and pictures are increasingly furnished with distinguishing but imperceptible marks, which may contain a hidden copyright notice or serial number or even help to prevent unauthorized copying directly. Military communications systems make increasing use of traffic security techniques which, rather than merely concealing the content of a message using encryption, seek to conceal its sender, its receiver, or its very existence. Similar techniques are used in some mobile phone systems and schemes proposed for digital elections. Criminals try to use whatever traffic security properties are provided intentionally or otherwise in the available communications systems, and police forces try to restrict their use. However, many of the techniques proposed in this young and rapidly evolving field can trace their history back to antiquity, and many of them are surprisingly easy to circumvent. In this article, we try to give an overview of the field, of what we know, what works, what does not, and what are the interesting topics for research.

2,561 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Proceedings ArticleDOI
01 Jul 1992
TL;DR: 2.1 Conventional Metamorphosis Techniques Mc[:ml(wpht)iii twlween lWo or mor’c imafys (wer lime i) u uwi’ul \ i~u;ii tcchniquc.
Abstract: 2.1 Conventional Metamorphosis Techniques Mc[:ml(wpht)iii twlween lWo or mor’c imafys (wer lime i) u uwi’ul \ i~u;ii tcchniquc. (Jflen uwd f’orCducaliomd (n’tMCid;liMll Cnt purpt>wi. ‘1’l-:idi(ional Iilmmahing techniques for (his cflcc[ include ~’lckcr c’ut~(iuc’h LISu chwwwr cxhibi(ing ch:mgm while running thr(mgll ;! toreil and prosing behind several trws ) tind op[ic:d cro\\diswdv<’. in which onc image is f:ide(i out while wwther is sinwlt:lnLNNI\l)f’:idcdin (Mith makeup ch:mge. tippliwcm, or nhjecl subs[i [u[I(m ). Sc\’~’riilclawic horror lilm~ illu$tfiite [he process: who ctwld hnycl ~hc b:lir-tai~ing (fiiniform;ilml of the Woitman. or the drw m:itic lllct;itll(~rpll(~sii from Dr. Jchyll [o Mr. Hyde’? This pupcr prcwmls ii c(mtcnlp{mmy w~lu(i(mto the vi~u:d translonmrtion pnh lL’nl.

1,130 citations