scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Enhancing strength-ductility synergy of carbon nanotube/7055Al composite via a texture design by hot-rolling

TL;DR: In this paper, texture optimization through hot-rolling was employed to improve the strength-ductility of the CNT/7055Al composites, which is an urgent problem to be solved.
Abstract: The limited ductility of carbon nanotubes reinforced Al matrix (CNT/Al) composites hinders their engineering applications, which is an urgent problem to be solved. Herein, texture optimization through hot-rolling was employed to improve the strength-ductility of the CNT/7055Al composites. Microstructural examinations indicate that the composite subjected to extrusion (CNT/7055Al-E) had a bimodal structure with the coarse and ultrafine grains. The composite subjected to extrusion followed by hot-rolling (CNT/7055Al-ER) exhibited a uniform ultrafine grain structure. No further structure damage or aggregation was detected for the CNTs after hot-rolling. The texture analysis demonstrates that the CNT/7055Al-E had a fiber texture, while the CNT/7055Al-ER had a plate texture including {011} , {113} and {215} components with higher texture intensity. Compared with the CNT/7055Al-E, the CNT/7055Al-ER increased twofold in elongation with a slight decrease in strength, which was attributed to the favorable grain orientations, the increased proportion of low angle grain boundaries, as well as the fine and densely distributed precipitates. Further, the mechanical property anisotropy of the composite was weakened after hot-rolling due to the elimination of coarse grain bands.
Citations
More filters
Journal ArticleDOI
15 Oct 2021-Carbon
TL;DR: In this paper, the authors report the prominent strengthening efficiency in graphene nanosheet reinforced Al matrix composites fabricated via hybrid deformation combining hot extrusion and multi-pass hot rolling (MPHR).

19 citations

Journal ArticleDOI
TL;DR: In this article, two heterogeneous CNT/2009Al composites with coarse grain (CG, 2μm) DZs or ultra-fine grain (UFG, ~500 nm)DZs were fabricated and achieved enhanced strength-ductility.
Abstract: Heterogeneous structure consisting of brittle-zones (BZs) rich of carbon nanotubes (CNTs) and ductile-zones (DZs) free of CNTs, was an effective way to improve the strength-ductility of CNT reinforced Al (CNT/Al) composites. Two heterogeneous CNT/2009Al composites with coarse grain (CG, ~2 μm) DZs or ultra-fine grain (UFG, ~500 nm) DZs were fabricated and achieved enhanced strength-ductility. However, the heterogeneous composite with CG DZs had a lower high-cycle fatigue strength as well as fatigue strength/tensile strength ratio than the uniform composite, while the heterogeneous composite with UFG DZs exhibited the increased fatigue strength and the same level of fatigue strength/tensile strength ratio compared to the uniform composite. It was found that the improved fatigue properties for the heterogeneous composite with the UFG DZs could attribute to two reasons. Firstly, the UFG for the DZs significantly increased the strength of DZs, which effectively reduced the strain localization in the DZs. Secondly, the dislocations piling up at the grain boundaries of the BZs, as well as the stress concentration at the boundaries between the DZs and BZs were relieved due to the coordinated micro-strain for the heterogeneous structure. This provided a simple strategy for the structural design of heterogeneous composites with high fatigue strength.

13 citations

Journal ArticleDOI
30 Oct 2021-Carbon
TL;DR: In this paper, the tension-tension/tension-compression fatigue behaviors of bimodal structure CNT/7055Al composites consisting of ultra-fine grain (UFG) zones rich of CNTs and coarse grain (CG) bands free of carbon nanotube (CNTs) were investigated and the corresponding damage mechanisms were analyzed.

8 citations

Journal ArticleDOI
TL;DR: In this article , the influence of hot rolling on the microstructure, mechanical properties, anisotropy and interfacial conditions of the B 4 C/Al composites were systematically investigated.

5 citations

Journal ArticleDOI
TL;DR: In this paper , a review of the relevant literature concerning the simulation of graphene/metal composites and their mechanical properties is presented, showing that computer simulation is a possible and practical way to understand the effect of the morphology of graphene reinforcement and strengthening mechanisms.
Abstract: Although carbon materials, particularly graphene and carbon nanotubes, are widely used to reinforce metal matrix composites, understanding the fabrication process and connection between morphology and mechanical properties is still not understood well. This review discusses the relevant literature concerning the simulation of graphene/metal composites and their mechanical properties. This review demonstrates the promising role of simulation of composite fabrication and their properties. Further, results from the revised studies suggest that morphology and fabrication techniques play the most crucial roles in property improvements. The presented results can open up the way for developing new nanocomposites based on the combination of metal and graphene components. It is shown that computer simulation is a possible and practical way to understand the effect of the morphology of graphene reinforcement and strengthening mechanisms.

4 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a Geiger counter spectrometer to measure the changes in intensity distribution in the spectra of cold worked aluminium and wolfram and found that the line breadths may be attributed to simultaneous small particle size and strain broadening, the latter predominating at the higher Bragg angles.

7,802 citations

Journal ArticleDOI
TL;DR: The common design motifs of a range of natural structural materials are reviewed, and the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts are discussed.
Abstract: Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.

3,083 citations

Journal ArticleDOI
TL;DR: In this article, the relationship between precipitation phenomena, grain size and mechanical behavior in a complex precipitation-strengthened alloy system, Al 7075 alloy, a commonly used aluminum alloy, was selected as a model system in the present study.

995 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the recent development in the synthesis, property characterization and application of aluminum, magnesium, and transition metal-based composites reinforced with carbon nanotubes and graphene nanosheets.
Abstract: One-dimensional carbon nanotubes and two-dimensional graphene nanosheets with unique electrical, mechanical and thermal properties are attractive reinforcements for fabricating light weight, high strength and high performance metal-matrix composites. Rapid advances of nanotechnology in recent years enable the development of advanced metal matrix nanocomposites for structural engineering and functional device applications. This review focuses on the recent development in the synthesis, property characterization and application of aluminum, magnesium, and transition metal-based composites reinforced with carbon nanotubes and graphene nanosheets. These include processing strategies of carbonaceous nanomaterials and their composites, mechanical and tribological responses, corrosion, electrical and thermal properties as well as hydrogen storage and electrocatalytic behaviors. The effects of nanomaterial dispersion in the metal matrix and the formation of interfacial precipitates on these properties are also addressed. Particular attention is paid to the fundamentals and the structure–property relationships of such novel nanocomposites.

877 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructures and mechanical properties of equal-channel angular pressing (ECAP) processed and naturally aged ultrafine grained (UFG) and coarse-grained (CG) 7075 Al alloys as well as their evolutions during annealing were investigated.

787 citations