scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Enhancing the catalytic activity of g-C3N4 through Me doping (Me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process

01 Sep 2017-Chemical Engineering Journal (Elsevier)-Vol. 323, pp 260-269
TL;DR: In this article, Me-doped g-C 3 N 4 (Me=Cu, Co and Fe) catalysts with various %w/w of Me dopant are prepared by a versatile calcination protocol for catalytic redox-based advanced oxidation process.
About: This article is published in Chemical Engineering Journal.The article was published on 2017-09-01. It has received 213 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A new routine for effective PMS activation by heterogeneous iron-complexed catalysts to efficiently degrade organic contaminants via nonradical pathway is provided.
Abstract: Herein, we proposed a new peroxymonosulfate (PMS) activation system employing the Fe(III) doped g-C3N4 (CNF) as catalyst. Quite different from traditional sulfate radical-based advanced oxidation processes (SR-AOPs), the PMS/CNF system was capable of selectively degrading phenolic compounds (e.g., p-chlorophenol, 4-CP) in a wide pH range (3–9) via nonradical pathway. The generated singlet oxygen (1O2) in the PMS/CNF3 (3.46 wt % Fe) system played negligible role in removing 4-CP, and high-valent iron-oxo species fixated in the nitrogen pots of g-C3N4 (≡FeV═O) was proposed as the dominant reactive species by using dimethyl sulfoxide as a probe compound. The mechanism was hypothesized that PMS was first bound to the Fe(III)-N moieties to generate ≡FeV═O, which effectively reacted with 4-CP via electron transfer. GC-MS analysis indicated that 4-chlorocatechol and 1,4-benzoquinone were the major intermediates, which could be further degraded to carboxylates. The kinetic results suggested that the formation of ...

611 citations

Journal ArticleDOI
TL;DR: In this article, a critical review on the recent practical and theoretical development in graphene and carbon nanotubes (CNTs)-based materials as carbocatalysts for the activation of peroxymonosulfate (PMS) and peroxydisulfate(PDS).

398 citations

Journal ArticleDOI
TL;DR: In this paper, Nitrogen-doped graphenes (NG) fabricated through thermal annealing of graphene oxide (GO) and urea was applied to activate peroxymonosulfate (PMS) for sulfacetamide (SAM) degradation.
Abstract: Nitrogen-doped graphenes (NG) fabricated through thermal annealing of graphene oxide (GO) and urea was applied to activate peroxymonosulfate (PMS) for sulfacetamide (SAM) degradation. The contents of reactive functional groups (graphitic N, pyridinic N, pyrrolic N, nitric oxide and C O) and catalytic performance of NG were delicately controlled by adjusting thermal annealing temperature. Thermal annealing temperature of ≥500°C was required to produce the NG endowed with catalytic activity for SAM degradation via PMS activation. NG600 (NG prepared at 600°C) with a high N doping level (16.0 wt%) and a most optimum amount of pyridinic N (38.4%N), pyrrolic N (31.8%N), graphitic N (25.9%N) and C O groups (43.7%O) exhibited the most outstanding catalytic activity to activate PMS. NG600 with the controlled N bonding configurations possessed a higher SAM degradation efficiency than NGs prepared via other optimized synthesis methods The specific surface area (SSA) contributed less significantly than N doping to the SAM degradation performance. Increments in the PMS dosage and catalyst loading were both conducive to the catalytic performance of NG. The presence of NO3− in the NG600/PMS system had a negligible influence on SAM degradation but Cl− and humic acid decreased the SAM degradation rate. Experiments using chemical scavengers and electron paramagnetic resonance (EPR) study revealed that SAM degradation process follows predominantly the radical pathway with sulfate radical (SO4 −) as the main reactive oxygen species over the non-radical pathway. Density functional theory (DFT) calculations suggest that graphitic N can facilitate PMS adsorption on the NG and SAM degradation. This study improves the understanding on the role of different surface N functional groups of NG in the PMS activation.

375 citations

Journal ArticleDOI
TL;DR: This review aims to concisely highlight recent state-of-the-art progress of g-C3N4-based catalysts in AOPs beyond photocatalytic oxidation and the effect of water chemistry including pH, water temperature, natural organic matter, inorganic anions and dissolved oxygen on the catalytic performance.

326 citations

Journal ArticleDOI
Limin Hu1, Guangshan Zhang1, Meng Liu1, Qiao Wang1, Peng Wang1 
TL;DR: In this article, a novel Co3O4-Bi2O3 catalyst was synthesized using a microwave-assistant method, and the corresponding characteristics were studied through XRD, SEM, and N2 adsorption.

313 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes, and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods.
Abstract: Kinetic data for the radicals H⋅ and ⋅OH in aqueous solution,and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes.

9,887 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: In this article, rate constants have been compiled for reactions of various inorganic radicals produced by radiolysis or photolysis, as well as by other chemical means in aqueous solutions.
Abstract: Rate constants have been compiled for reactions of various inorganic radicals produced by radiolysis or photolysis, as well as by other chemical means in aqueous solutions. Data are included for the reactions of ⋅CO2 −, ⋅CO3⋅−, O3, ⋅N3, ⋅NH2, ⋅NO2, NO3⋅, ⋅PO32−, PO4⋅2−, SO2⋅ −, ⋅SO3 −, SO4⋅−, ⋅SO5⋅−, ⋅SeO3⋅ −, ⋅(SCN)2⋅ −, ⋅CL2⋅−, ⋅Br2⋅ −, ⋅I2⋅ −, ⋅ClO2⋅, ⋅BrO2⋅, and miscellaneous related radicals, with inorganic and organic compounds.

2,958 citations

Journal ArticleDOI
TL;DR: In this article, a top-down thermal oxidation etching of bulk g-C3N4 in air has been shown to improve the photocatalytic activities of the material in terms of OH radical generation and hydrogen evolution.
Abstract: Graphitic (g)-C3N4 with a layered structure has the potential of forming graphene-like nanosheets with unusual physicochemical properties due to weak van der Waals forces between layers. Herein is shown that g-C3N4 nanosheets with a thickness of around 2 nm can be easily obtained by a simple top-down strategy, namely, thermal oxidation etching of bulk g-C3N4 in air. Compared to the bulk g-C3N4, the highly anisotropic 2D-nanosheets possess a high specific surface area of 306 m2 g-1, a larger bandgap (by 0.2 eV), improved electron transport ability along the in-plane direction, and increased lifetime of photoexcited charge carriers because of the quantum confinement effect. As a consequence, the photocatalytic activities of g-C3N4 nanosheets have been remarkably improved in terms of OH radical generation and photocatalytic hydrogen evolution.

2,900 citations